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A B S T R A C T

Design protocol analysis is a technique to understand designers’ cognitive processes by analyzing sequences of
observations on their behavior. These observations typically use audio, video, and transcript data in order to
gain insights into the designer's behavior and the design process. The recent availability of sophisticated sensing
technology has made such data highly multimodal, requiring more flexible protocol analysis tools. To address
this need, we present VizScribe, a visual analytics framework that employs multiple coordinated multiple views
that enable the viewing of such data from different perspectives. VizScribe allows designers to create, customize,
and extend interactive visualizations for design protocol data such as video, transcripts, sketches, sensor data,
and user logs. User studies where design researchers used VizScribe for protocol analysis indicated that the
linked views and interactive navigation offered by VizScribe afforded the researchers multiple, useful ways to
approach and interpret such multimodal data.

1. Introduction

Design as an activity can be interpreted in different ways: as a social
practice that requires interaction between designers (Oak, 2011), as a
cognitive process in the form of a dialogue between the designer and their
sketch (Goldschmidt, 1991), or as an elicitation of tacit knowledge by the
designer (Henderson, 1998). In all, action, interaction, and communication
are essential components of the designer's process. To understand the
designer's thinking and the design process, it is necessary to study how
designers interact with each other and their environment.

Such studies, often falling under the broader category of protocol
studies involve recording the design session on video and audio,
followed by transcribing, segmenting, and coding such data. Dinar
et al. (2015) discuss such analyses in their detailed review of empirical
studies of design, including traditional protocol analyses that involve
coding designer utterances and actions. Typically verbal data forms the
basis of such analyses, such as think-aloud protocol analysis where a
designer verbalizes her activities, giving insight into her thought
process (Ericsson, 2006), or latent semantic analyses of a design team
discussion to assess coherence between team members (Dong, 2005).

Analysis of verbal data requires manual transcriptions of partici-
pant verbalizations by transcribers—often lacking domain knowledge—
provided with a relevant glossary of terms. These transcriptions and
segmentations then need to be verified by employing multiple coders.
The design researcher may not be the one coding the data, although
they may need to explore the data to identify questions that need
answering. In addition to audio and video data, protocol studies often
also involve analysis of sketches, notes, and other “marks-on-paper”
(Ullman et al., 1990, p.269) that are integral to designer behavior. To
designers, sketches function as external memory, or as a medium to
think. To analysts, sketches are externalizations of the designer's
thoughts, providing insights into their mind. Sketches are also logs of
their thought sequences.

Qualitative analyses of protocol studies—both in-situ and in-vivo—
may require making sense of multimodal data. This data can include,
but is not restricted to, audio/video recordings, artifacts created by
subjects, or electronic records of user activity, typically through the use
of Computer-Aided Qualitative Data Analysis Software (CAQDAS).
However, while there are many options in CAQDAS software for
analyzing and coding video, transcripts, and document data, there
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are few that provide support for broader forms of data, including
movement, activity and position data from smartphones or sociometric
sensors, or even psychophysiological measurement devices such as
electroencephalography. Dinar et al. (2015), in their review of 25 years
of research in design theory and methodology, suggest the use of
automated data collection and analyses to process the increasing
volume and heterogeneity of data collected in such studies.

To address these challenges, we look to the field of visual analytics
for inspiration. Visual analytics is “the science of analytical reasoning
facilitated by interactive visual interfaces” (Thomas and Cook, 2005, p.
4). Specifically, it focuses on interactive visual representations that
exploit the human ability to spot patterns and anomalies, while
allowing the computer to process large datasets. Information visualiza-
tion (Infovis), defined as a “graphical representation of data or
concepts” (Ware, 2012, p.2), naturally forms an essential part of visual
analytics. Keeping these needs and possibilities in mind, we present
VizScribe, a web-based framework that supports the representation of
multimodal data, including traditional as well as newer forms dis-
cussed earlier. The framework allows analysts to generate appropriate
visual representations of temporal datasets, and link them to the
existing video and transcript displays. These visualizations include line
or area charts, timeline plots, color maps, or any other visualization
that the user can construct using the underlying JavaScript library.
VizScribe supports interactive, coordinated visualizations that can be
customized. The coordination between visualizations is performed
through brushing and linking (Li and North, 2003), an infovis
technique that, when the user selects a part of the data shown on
visualization, updates the other coordinated views to reflect the
selection. The technique allows analysts to easily and intuitively
explore the data and interactively code it. In the context of protocol
analysis, this supports contextual exploration of data, allowing the
analyst to attend not only to singular data sources, but also intersec-
tional and contextual factors. This in turn helps analysts develop a
“thick description” (Geertz, 1973) of the designer's behavior: a
description that explains both the mechanics and the context of the
behavior.

The contributions of this work are twofold: (1) a web framework for
protocol analysis inspired by visual analytics techniques, and (2)
results from formative and summative studies of protocol analysts
using the framework to analyze a team brainstorming session. The
framework itself enables the analyst to:

• Explore and analyze time-stamped verbal protocol data by creat-
ing coordinated, interactive timeline visualizations, word-cloud
views, and transcript views that are linked to the corresponding
video data,

• Visualize other protocol data such as server logs and biometric/
sociometric sensor data in the form of interactive timeline visualiza-
tions, linked to the visualizations of the verbal protocol data above,

• Select and code the verbal protocol data, and finally

• Customize or add new timeline visualizations that are pertinent to
their study.

To test the usefulness and to refine the usability of the VizScribe
framework, we performed two studies: (1) a formative study involving
both prescribed and open coding tasks, and on further refining the
framework, (2) a summative study in which participants analyzed a
60 min design session through video, transcript, sketch, speech, and
activity data. Our studies demonstrated that timeline and text views of
the transcript, and the timeline view of sketching activity were the most
widely-used visualizations for most tasks, while word cloud visualiza-
tions were used as a filter to identify salient parts of the transcript. We
observed that participants both with and without training in CAQDAS
tools were comfortable using VizScribe to sift through the data.

VizScribe allowed analysts to orient themselves with a medium that
they found most comfortable—sketches, transcript, or the video of the
design session shown—with little difference in the task outcome or the
user feedback.

In the following sections, we review related work in protocol
studies, motivate the need for visualization techniques to represent
both temporal and text data, and detail the design and implementa-
tion of the VizScribe framework. We then describe the user studies,
and participant feedback, finally highlighting challenges and future
work.

2. Background

In this section we discuss existing tools for protocol studies. We
then motivate the need for two kinds of visualization techniques for
such studies: event-based representations for temporal analysis, and
text visualizations for inferring patterns in the structure and semantics
of the transcribed text.

2.1. Existing tools for protocol studies

Early work on computational support for protocol studies included
artificial intelligence-based systems such as PAS-II (Waterman and
Newell, 1973), which incorporated linguistic processing on task
verbalizations to generate graph representations of human knowledge,
and KRITON (Diederich et al., 1987), a knowledge-extraction system
that infers knowledge elements and then forms relations using
propositional calculus. Other approaches to support such studies used
generic software such as AQUAD (Huber and Garcia, 1991) and
SHAPA (Sanderson et al., 1989) for collecting and organizing data,
metadata, and annotations.

Commercial tools for qualitative analysis include multimedia
processing tools such as ATLAS.ti1 and NVivo.2 These allow visua-
lization and annotation of video and transcribed text, preserving
associations between the two. The Computational Analysis Toolkit
(Lu and Shulman, 2008) extends ATLAS.ti to a web-based frame-
work while increasing coding flexibility and speed. StudioCode3 is
another popular tool for video and transcript analysis. Other tools,
such as LINKOgrapher (Pourmohamadi and Gero, 2011) are devel-
oped for more downstream applications: analysis of codes using a
predefined ontology in the context of conceptual design. However,
these tools cannot provide coordinated views of multimodal data,
nor can they adapt to diverse and evolving forms of data that
protocol studies are beginning to entail. VizScribe is designed for
integrating of multimodal data, allowing a synchronized view of all
recorded events accompanying the main audio/video and transcript,
to provide context to the user.

Each of these tools has their specific advantages and disadvan-
tages; for instance, there are issues such as forced workflows
(imposing a specific style and sequence in coding), coding fetishism
(using coding irrespective of whether or not it is appropriate),
distancing the user from data, or, at the other end of the spectrum,
difficulty in conceptual abstraction (Duff and Séror, 2005). Complete
automation of the coding process is another challenge. For example,
automated coding tools need better approximations of linguistic
features inherent to coding schemes (Rosé et al., 2008). While it is
unclear whether a visual analytics-based approach will mitigate
some of these issues, a combination of visual representation and
computational analysis should serve to augment the pattern-recog-
nizing strengths of the human user and the data processing power of
the computer.

1 http://www.altasti.com/
2 http://http://www.qsrinternational.com/
3 http://www.studiocodegroup.com/

S. Chandrasegaran et al. International Journal of Human - Computer Studies 100 (2017) 66–80

67



2.2. Visualizing event-based data

Analysis of data collected from protocol studies involves a temporal
component, with a view to identifying and annotating co-occurring
events. We restrict this section to related work in timeline visualiza-
tions of categorical data, which is more relevant to protocol studies
than numerical data.

Lifelines (Plaisant at al., 1996) is a general representation of
biographical data, visualizing discrete events and relationships, and
allowing focus on specific parts on the timeline information. Wang
et al. (2008) use timeline-based interactive visualizations to align
events in patient medical records in order to identify co-occurrences
of other related events. Challenges in interacting with such representa-
tions are illustrated by Monroe et al. (2013), who developed a visual
query mechanism for these events.

CyberForensic Timelab (Olsson and Boldt, 2009) uses timeline dis-
plays for establishing history in cyberspace. It displays a timeline view of
electronic records of personal, time-stamped events, to provide the
investigator with a visual history of events. PortVis (McPherson et al.,
2004) uses an overview and detail-on-demand approach to display activity
on a large set of TCP ports in a network over time, identifying traffic
anomalies that signify possible attacks on the network.

Stab et al. (2010) use timeline views for more general applications:
they develop SemaTime, a temporal visualization tool that allows
hierarchical categorization and filter of domain-specific data. It also
incorporates semantic relationships between entities, similar to
Continuum (André et al., 2007), which also provides histogram over-
view and timeline detail view of temporal events. Temporal relation-
ships are represented as spans of bounding boxes, providing a visually
pre-attentive visualization, with the level of detail controlled using a
“dimension filter”. Rubin et al. (2013) present a set of tools for
Navigation and editing between speech and transcript for high-level
editing of interviews to create “audio stories”. These tools, though not
meant for protocol studies, use methods that are both relevant and
useful for future iterations of VizScribe.

More relevant to our work are the Digital Replay System (Brundell
et al., 2008), an ethnographic tool that uses an ontology-based data
representation for multimodal data analysis, and Chronoviz (Fouse
et al., 2011), a timeline-based annotation and visualization of multi-
media data that uses timestamps to display video, audio, and electro-
nically-recorded annotations with related timeline data such as geos-
patial data and sensor logs. Like Chronoviz, VizScribe provides a
coordinated view of multiple timeline visualizations, and a way for
the user to modify and create custom timeline visualizations. However,
VizScribe differs from Chronoviz in three main ways:

• It emphasizes verbal data by providing three different, mutually
coordinated views of the transcript: a timeline view, a text view, and
a word cloud view for temporal and overview exploration, and finally
a fourth “text concordance” view of all the contexts in which a
selected word is used in the data.

• It supports the creation and use of more complex timeline-based
visualizations such as sketching behavior which is partly temporal
(e.g. sketch creation times) and partly semantic (e.g. showing the
progression of a sketch and its collaborative development over time).

• Finally, the framework runs on the web browser and uses the D3
visualization plugin, making it both cross-platform and customiz-
able.

While Dedoose is also a web-based and cross-platform tool, the
remaining advantages of our framework are maintained when com-
pared to it, as well as to other CAQDAS tools. However, it is worthwhile
to note that VizScribe is an implementation of a visual analytics
approach to protocol analysis, and not an end-to-end CAQDAS
product. As such, the focus of this work lies in the rationale behind
this approach, its design, implementation, and evaluation.

2.3. Visualizing text

Protocol analysis almost always includes transcribed text as a
main data format. These are thus uniquely suited for a combination
of text visualization linked to associated timeline visualizations
discussed earlier. Previous tools for in-situ studies have used
computational linguistics to draw inferences. However, there is no
panacea for cross-domain linguistic analysis. Polysemy and sentence
parsing issues make a completely automated text analysis tool a
considerable challenge.

Developments in visualization techniques have opened up another
dimension in text analysis: visualizing text data. Basic text visualiza-
tions include frequency-based word clouds such as Wordle,4 keyword
in context representations (Manning and Schütze, 1999), and lexical
dispersion plots (Hoey et al., 2001). More sophisticated visualizations
involve a degree of aggregate representation, or representation of
metadata. The Word Tree (Wattenberg and Viégas, 2008) is an example
of the former, with its aggregation of concordant terms to form a ‘tree’
of words or phrases, scaled by occurrence. Parallel Tag Clouds (Collins
et al., 2009b) is an example of the latter, with tag clouds in the form of
parallel axes to represent relationships between multiple documents.

Representations for document content overview include Arc
Diagrams (Wattenberg, 2002), which represent document structure
visually, or in semantic form as visualized in DocuBurst (Collins et al.,
2009a). Such semantic bird's-eye visualizations work well when
combined with the more detailed keyword visualizations for an
effective combination of overview and detail. VizScribe uses the word
cloud and keyword in context representations, and a version of lexical
dispersion plots as the transcript timeline view with interactive linking
between these.

3. Design rationale: visualizing multimodal protocol data

Newell (1966, p.1) defines a protocol as “a record of the time
sequence of events” that also includes “continuous verbal behavior of
the subject” in the context of problem solving in a think-aloud setting.
These transcripts of verbal behaviors are studied, annotated, and coded
by design researchers, in order to form and test hypotheses, and to
answer research questions (Pourmohamadi and Gero, 2011). Such
annotations and codes are created by first identifying design behaviors
situated in a specific time and context, determining categories of such
behavior, and assigning them to appropriate codes. The analyst's
challenge is to make sense of a multitude of such time series data or
observations, by linking them to transcripts of designer discourses,
video captures of designer actions, and artifacts such as sketches or
prototypes created by the designer.

Our layout design and the interactions afforded by our frame-
work are informed by these aspects of protocol studies. With the
increasing prevalence in the use of software tools for design and the
use of sensors such as accelerometers, gyroscopes, and bluetooth
devices to track collaboration dynamics in teams (Kim et al., 2012),
protocol data have become richer and more varied. Making sense of
such multiple forms of data depends on two major factors: the way in
which these datasets are displayed to the user (analyst) and the way
in which the user is able to interact with these datasets. Both of these
requirements are commonly encountered when designing infovis
and visual analytics tools and will thus benefit from principles
derived from these fields.

VizScribe is designed essentially as a cohesive collection of co-
ordinated multiple views (Heer and Shneiderman, 2012, p.12)—linked
views of related datasets that enable the viewing of the data from
multiple perspectives. The rationale and requirements behind this
framework are detailed in this section.

4 http://www.wordle.net/
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R1 Spatial coherence: Visually representing time sequences of events,
including verbal behavior, needs a spatially coherent alignment to
make sense of these sequences. Position is a widely accepted
encoding of quantities occurring on a scale (Carpendale, 2003),
the scale in this case being time. All timeline data pertinent to a
video-recorded protocol study session must thus be presented
coherently with the video timeline.

R2 Multiscale representation: The substantial data obtained from
protocol studies can benefit from multiple scales of representation:
of time, content, and detail. These allow the user to identify
patterns and form meaningful connections between data. This
“overview + detail” approach (Shneiderman, 1996) is a funda-
mental requirement of interactive visualizations, and is integral to
the interpretive coding process as well (Creswell, 2012).

R3 Context awareness: Connections between different representations of
data need to be made evident to the user as needed. For data from
protocol studies, this is especially important in order to provide
context. This is also useful when the analyst is trying to understand if
there are patterns of behavior evident in the coded sets of data.

R4 Interactivity: Making sense of multiple datasets requires fluid
interactions with their representations. These interactions should
allow the user to orient themselves to data visualizations, focus on
specific elements of the visualizations, and then code the data.
Elmqvist et al. (2011, p.336) emphasize the importance of
“providing immediate visual feedback on interaction” for both
major and minor interaction events. They also recommend allow-
ing the user to interact directly with the visual elements.

R5 Extensibility: Given the ever-changing nature of data collected in
protocol studies, such visualizations need to be extendable to
accept newer forms of data, mapped to appropriate visual repre-
sentations.

4. The VizScribe framework

VizScribe's design addresses the previously-established require-
ments of spatial coherence, multiscale representations, context aware-

ness, interactivity, and extensibility. The two main aspects of this
design are the layout—determining how the data is represented to the
user— and interactions—determining how the user explores the data.
We detail both these aspects here.

4.1. Layout

VizScribe's layout is divided into two main sections, shown in
Fig. 1:

• A temporal view, where all time-series data is shown in congruence
with the video of the design session being studied, and

• A transcript view where the transcript and other transcript-related
data including word frequencies and codes are shown.

4.1.1. Temporal view
Video data forms the central reference of this view, providing

context to any of the other forms of temporal data. Visual representa-
tions of time-sequenced data should be designed to answer the
question of “what was happening when…?”, by providing a means to
align all temporal data such that it provides context to the analyst. The
temporal view pane thus includes a video playback interface, with time
encoded as a progress bar spanning the width of the pane. All timeline
data visualizations are stacked under the video interface. They are
scaled to, and aligned with the video progress bar, providing spatial
coherence (requirement R1).

The temporal view features an event-level interpretation of
protocols, including a timeline representation of the transcript.
Our visual encoding of these events is inspired partly from temporal
sequencing visualizations by Isenberg et al. (2008). The transcript is
encoded as a series of thin vertical marks as shown in Fig. 2,
annotated as the “transcript” timeline visualizations. Each horizon-
tal strip of marks represent utterances of one speaker, identified in
the transcript file. Multiple speakers or subjects are color-coded
accordingly across visualizations based on Harrower and Brewer's
(2003) qualitative scheme. While the example shown in this paper
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Fig. 1. A screenshot of VizScribe shows representations of video, transcript, sketching activity, speech participation, and physical activity based on corresponding data. These data are
displayed as interactive timeline views, such as video progress, transcript visualization, and sketch timeline. Word cloud and transcript views also allow the user to interact directly with
the data. The user can jump to a specific part of the video by clicking the transcript, and can select a line to assign it a specific code. A short demonstration of VizScribe can be seen here:
https://vimeo.com/169905057.
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does not use a colorblindness-safe set of colors, Harrower &
Brewer's scheme includes sets of colors that work for those with
users who have difficulty distinguishing colors. The dynamic linking
between different visualizations (discussed under the “Orient”
interaction in Section 4.2) provides another layer of visual connec-
tion that works in addition to the linking by color. The color coding
is consistent across timelines, as seen in the figure. In the data used
for this figure, sketching is performed on digital tablets and shared
among users, allowing sketching activity to be logged. The visualiza-
tion of this sketching activity also indicates through connecting lines
the modification or extension of previous sketches, inspired from
Robinson (2008) and Zhao et al. (2014).

This timeline visualization is also designed to be extensible (R5),
wherein the design researcher, with some programming background,
can modify existing timeline visualization panels, or add new panels of
their own to suit their requirements. For example, the speech partici-
pation data and accelerometer data collected from personal sociometric
devices (Olguín et al., 2009) on each subject is visualized in the
interface shown in Fig. 2. This extensibility is explained in detail in
Section 5. Finally, any coding performed on the transcript is also
reflected in the timeline view, color-coded according to the user-
defined codes. All of the above timeline visualizations are overlaid with
a video progress indicator (Fig. 2), visually linking them to the current
time in the video.

4.1.2. Transcript view
The transcript view shows an interactive view of the transcript

with corresponding text visualizations and annotations. Color-coded
speaker identifiers provide a visual link to the corresponding time-
line visualizations. In addition, within the transcript view, a word
cloud view is generated from the complete text of the transcript after
stop word removal. The words are scaled in proportion to the
frequency of their occurrence in the text, helping identify recurring
terms in the transcript. The transcript timeline view, text view, and
word cloud together present multiple scales of representation (R2)
to view participant utterances. Finally, a “code view” section within
the transcript view allows the researcher to define and edit codes. A
hierarchical code definition is enabled through tabbed entries in the
field, thus supporting open coding. The code view is color-coded as
well, and any transcript assigned to a particular code can be
identified through these colors, thus providing context awareness
(R3).

Each visualization embedded in these views is linked to related
visualizations, shown implicitly through color and position, and
identified explicitly through user interactions. These interactions are
described in detail in the following section.

4.2. User interactions

Fluidity of interaction and directness with which the user (in the
context of VizScribe, the user is the analyst or researcher) can
manipulate the data representations separate an effective visual
analytics system from an ineffective one. Guidelines for designing such
interactions have been determined with respect to mapping user intent
(Yi et al., 2007) as well as fluidity of interactions (Elmqvist et al., 2011).
The interactions designed into VizScribe address requirement R4, i.e.
enabling fluid user interactions with the displayed representations. The
three kinds of interactions designed into VizScribe are as follows:

• Orient: This is the act of the user familiarizing themselves with the
data representations without explicitly changing its state. We map
such actions to hover events: the dwelling of the mouse pointer on
any element of the visualization, interpreted as the act of “raising the
attention of the computer as a dialogue partner” (Müller-Tomfelde,
2007, p.561).

• Focus: This is the act of the user focusing their attention on one
element on the data representations. We map such actions to
“selection” events (mouse click and associated interactions) that
change the state of the visualization.

• Code: This is the act of the user defining a code—a category of
behavior or utterance—and/or assigning that code to a part of the
transcript.

The user's process of analyzing the visualized datasets involves
moving from one of the above acts to the other, as depicted in Fig. 3.

4.2.1. Orient
Fig. 4 shows some of the ways in which users can orient themselves

to the data. Hovering on a line of the transcript highlights the
corresponding mark in the timeline representation of the transcript,
and vice versa. Similarly, hovering on a mark in the coded timeline
view also highlights the corresponding line on the transcript. Hovering
on a word in the word cloud highlights all the lines on which the word
occurs, and shows a filtered view of these words in the timeline view

Timeline views for 
speaker F4

video progress indicators

Verbalizations by F4
(transcript timeline)

Sketches created by F4
(sketching activity timeline) 

Sociometric sensor-measured 
speech participation by F4 

(speech participation timeline)

Sociometric sensor-measured 
physical activity of F4

(activity timeline)

Fig. 2. Detail of VizScribe's temporal view. The video used in this example has four participants or speakers, and thus each participant's activities are color-coded and displayed on the
timeline. In this figure, all activities of participant F4 are illustrated as an example. The timeline of verbalizations shows a series of markers ( ) indicating instances of F4's speech.

Similarly colored markers are used for the remaining timeline views for F4.

Orient Focus Code
Hover over visualized 
items to identify 
connections

Investigate connections 
by filters or detail views

Categorize items of 
interest that follow a 
pattern

Fig. 3. The flow of analysis designed into VizScribe. The user initially orients themselves
to the various visualizations, using hover operations to explore connections. They then
focus on items of interest, and finally begin coding these items into categories. The
resulting coded visualizations are further explored to obtain better insight into the data.
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(Fig. 4B). Hovering on the sketch timeline view described in Section
4.1.1 display thumbnails of the corresponding sketches (Fig. 4C).

These interactions provide a means to ensure that the user is not
overwhelmed with the multiple data representations. They also allow
the user a means of previewing points of interest in the dataset, before
performing an overt interaction to focus on that point for a closer
examination.

4.2.2. Focus
In protocol studies, context is one of the main relations that needs

to be examined. Yi et al. (2007) describe the act of “selection” in infovis
as marking a data item of interest to keep track of it. Selecting an item
in the temporal view has the effect of connecting this element to the
video timeline, by skipping the video to the timestamp corresponding
to the visualized element, to provide context. The timeline indicator on
all other temporal views also skip to this timestamp, providing a visual
cue of other temporal co-occurrences. Correspondingly, the transcript
view scrolls to a participant utterance closest to this time, highlighting
what was said close to the instant of interest.

In the transcript view, selecting any word from the word cloud
persistently highlights all corresponding lines in the text and timeline
view of the transcript. This allows the user to scroll around on the
transcript, or skip to the timestamps of interest in the video to examine
the data for patterns. Selecting a line on the transcript, when done
through a keyboard combination, skips the video to the timestamp
corresponding to that line, allowing the user to view any activity of
interest occurring around the time. It also allows the user to check for
any temporally co-occurring item of interest in the timeline visualiza-
tions.

Such interactions also allow for the filtering and details-on-demand
tasks specified by Shneiderman (1996). Filtering is the removal or de-
emphasis of uninteresting items, allowing users to focus on their

interests. Details-on-demand refers to obtaining details of a particular
selection, usually displayed on separate pop-up windows. In VizScribe,
filtering is achieved in several ways: selecting a block of text in the
transcript updates the word cloud to contain words from only the
selected block. This filtering is extended to speakers and coded sections
of the transcript: selecting a speaker (with a keyboard shortcut) on the
transcript timeline, updates the word cloud to only show words spoken
by that speaker, while selecting a code from the coded timeline view
updates the word cloud in the same way. VizScribe has two forms of
details-on-demand tasks: selecting a word in the word cloud (through a
keyboard shortcut) generates a keyword in context view showing text
immediately preceding and succeeding every occurrence of that word,
allowing the user to identify patterns in the context of utterance of that
word. These and other filtering interactions are shown in Fig. 5. A
similar selection of an item in the sketch activity timeline shows a
larger view of the sketch in a separate window, allowing the user to
examine its details.

4.2.3. Code
Typically, this data exploration is followed by the categorization of

utterances and behavior, and coding or annotating these with the
identified categories. VizScribe is provided with a text-entry field for
determining such code. Hierarchies of code are encoded by the user
through the use of tabbed indentations in the text entry. Once a code is
defined, they are assigned to a selected block of text through a context
menu. A unique color for each code allows the coded transcript text to
be highlighted on demand, as shown in Fig. 4(d). At any stage, the
coded transcript can be exported as a comma-separated value (CSV)
file for use with other tools. Fig. 6 shows the coding process and sample
codes created by two participants in our formative studies. The
diversity of the code generated and the hierarchies formed show how
VizScribe supports open, axial coding practices.

hover on speech timeline to view 
corresponding text/dialog, and…

…to highlight it in 
transcript view

hover on word cloud item to highlight its 
occurrences in the  timeline view and in the transcript view

red line shows 
video progress

gray lines connect 
different sketch versions

hover/click on a timeline 
item to view sketch

a

b

c d

sketching activity timeline 
represents sketches created 

by speakers

hover on elements in 
coded timeline view to 

highlight corresponding 
text in transcript view

Fig. 4. Various forms of brushing and linking used in the framework, to facilitate the envisioned orient and focus tasks. shows the transcript text on the right, linked to a time-

sequence representation of utterance “events” color-coded by speaker ID. Hovering on an element in the time-sequence view highlights the corresponding text in the transcript view, and
vice versa. shows similar interactive linking, but this time, hovering on a word in the word cloud shows all its occurrences in the time-sequence and text views. shows the sketch

log view, where each “event” represents a sketch save operation. A hover event on this view shows a thumbnail of the saved sketch. The interactions in are similar to except the

time-sequence view shows all utterance events assigned to a particular user-defined code.
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5. Framework implementation

The introduction of visualization libraries such as D3.js (Bostock
et al., 2011) has resulted in the web browser emerging as an
appropriate platform for infovis, for both collaboration and dissemina-
tion. We chose to implement VizScribe as a web-based framework, with
the data uploaded and stored at the server, and then processed and
visualized at the client end. This implementation has the added
advantages of platform independence, minimal installation require-
ments, and for future extension into a collaborative visual analytics
framework.

The application is hosted from a Node.js5 server. Design activity
data can be uploaded to this server by an analyst using VizScribe to

create a coding session. In the current interface, coding sessions are
automatically saved at the server (in the form of data logs), but are not
retrievable by the framework, so support for multiple sessions and
multiple users is yet to be implemented. The data is cached and hosted
for all client web browsers running the VizScribe interface. Almost all
data processing into structural and graphical elements for the visua-
lizations occurs at the client end. All visualization elements in VizScribe
have been developed using HTML5 and JavaScript, with the visualiza-
tions generated primarily using the D3 library.

From the server, the video is streamed, on demand, to an open-
source HTML5 video player called Video.js6 The interface thus never
stores the entire video but only chunks of it at the current playhead,
which can be paused, reversed, or fast forwarded. This protocol is

Filter by speaker: [ctrl-select] speech timeline to show word cloud for that particular speaker

Filter by text: [drag-select] transcript text to show word cloud for the selected text

Filter by code: [ctrl-select] code timeline to show word cloud for text assigned to that code 

Filter by keyword: [ctrl-select] word in word cloud to show its “keyword in context” view 

Fig. 5. Some of the filtering options available between the timeline and text views in VizScribe. The users can focus on specific parts of the datasets by filtering, say, the word cloud
display by speaker or by the assigned code. They can also directly select a section of the transcript, which updates the word cloud to the selected text, providing an overview of the text.
Finally, a keyword in context (KWIC) view of a word of interest provides a way to understand the context of its use in the transcript.

code definition

timeline
updated

code view

Defining task

Idea generation

Gender roles within the game

Development of war theme

Location of game play

Game strategy

Audience of game

Instruction from outside group

Procedural discussion

P1: Curriculum Major
Analysis of scope
Self-organization of design protocol
Design space categorization

Category addition
Category analysis

Foresight
Retrospective
Reflective

Category exploration
Vertical
Horizontal
Instances/Analogies

Decision
Detailing

Review of technique

P2: Design Major

code assignment

code timeline view

participant-defined codes from the study

assign code

Fig. 6. Coding in VizScribe and sample codes generated by participants from our formative studies. The screen captures from VizScribe on the left show the code definition and code
assignment. The hierarchical codes on the right were defined by the participants (P1 & P2) in the formative study. Though using the same dataset for the coding task, the participants
produced very diverse codes, based on their research backgrounds (curriculum development vs. design).

5 http://nodejs.org/ 6 http://videojs.com.
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therefore scalable to large video sizes and was handled through
websockets, specifically by using the socket.io7 library.

The data processing pipeline is shown in Fig. 7. Input data is first
uploaded to the server in the form of video and a transcript file, with
additional time-stamped data including, but not restricted to sketch
logs and corresponding image files of sketches, instrumentation logs
and activity logs. While it is essential that the transcript file includes
timestamps, speaker identifiers for each line of spoken text are
optional. The current data import requires transcripts to be in a
comma-separated value (.CSV) format, but is extensible to include
other formats such as the SubRip (.SRT) format or closed captioning
formats.

All log files, including sketching activity logs, need to have time-
stamped entries, and corresponding references to additional media
where applicable, such as sketches or images. These additional media
files, which can include images, vector graphics, and notes, are
uploaded as a single archive. This upload mechanism, showcased with
sketches in Fig. 7, is extensible to the other media types.

The transcript is reformatted into objects as specified under the
document object model (DOM), ensuring cross-browser compatibility.
In addition, this allows each object of the DOM to be programmatically
accessed. VizScribe uses the JQuery library8 to easily access and
manipulate DOM elements, and implement the interactive linking
between objects as discussed in the previous sections.

5.1. Customizing and extending VizScribe

Timeline entities are parsed and mapped to attributes of D3
graphical objects, aligned with the video timeline. We take advantage
of D3's data operator, a format-agnostic array of values that are linked
to visual elements displayed on the screen. Fig. 9 shows how a timeline
dataset is mapped on to a D3 object. This is also the means behind
VizScribe's extensibility: new time-series datasets can be represented in
an appropriate visualization by adapting any of the existing time-series
visualization classes, or making use of code templates made available
along with the source code,9 with detailed instructions on customizing

and extending VizScribe. While the step-by-step instructions on
extending VizScribe lay beyond the scope of this paper, and are
available in the Wiki accompanying the source code, this section will
provide a brief overview of the process.

Fig. 8 shows the high-level functions in VizScribe's code, high-
lighting the functions that need to be modified to customize existing
timeline visualizations, and the new functions that need to be added in
order to extend VizScribe to create new timeline visualizations.

Protocol studies are no longer just about video recordings and
transcripts. The use of sensor data to study designers to better
understand how they think, plan, interact, and make decisions, is not
new. For instance, Göker (1997) used EEG sensors to correlate
behavioral experiments with novice and expert designers and electro-
physiological experiments using EEG sensors to find that novices use
more of their reasoning (frontal lobe activity) to solve problems, while
experts use visual recognition (parietal lobe activity) to draw on their
experience to achieve the same. Similarly, Bi et al. (2015) use eye-
tracking data to understand the forms of visual stimuli that affect
design decision-making in test “game” scenarios. Finally, wearable
sociometric sensors (Olguín et al., 2009) are being used to study social
behaviors within groups, e.g. Gloor et al. (2012) or even provide real-
time mediation of brainstorming sessions to ensure equal participation
(Kim et al., 2008). We use these sociometric sensors in our user study.

To illustrate how VizScribe can be extended to include such data,
Fig. 9 shows how the timeline elements can be mapped to data
elements in the case of (a) discrete time series data measured over
intervals of time, such as speech participation measures, (b) continuous
or streaming data such as EEG sensor readouts, and (c) multi-
dimensional data that have temporal components, such as eye-tracking
data or user behavior logs that require additional visualizations in
addition to time-series visualizations. Standard event controllers are
available that can be changed to determine actions to perform when a
hover or select event occurs. Selecting an appropriate visualization is
an iterative process. By experimenting with the various geometric
entities available in D3, appropriate visualizations can be explored.

We envision VizScribe to be used by design researchers, who, with
some programming background, will be able to adapt the visualizations
to forms of data pertinent to their work. As mentioned earlier,
VizScribe's source code page has templates for the required functions,
and a detailed Wiki with instructions on installation, use, customiza-
tion, and extension of the framework.

Fig. 7. Visualization pipeline used in the VizScribe framework. The standard inputs (required) are in the form of a video and a timestamped transcript. The VizScribe web application
generates a default timeline and word cloud visualization for the transcript. Predefined code “templates” cater to other timestamped code, where the researcher, based on step-by-step
instructions in the VizScribe Wiki, can iteratively customize these templates to explore different interactive visualization forms. Once the visualizations are finalized, the researcher can
begin coding the transcript and exporting the coded data to a comma-separated value (csv) file.

7 http://socket.io
8 http://www.jquery.com
9 https://www.github.com/senthilchandrasegaran/vizscribe
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6. Framework evaluation: overview and rationale

The goal of VizScribe is to support protocol analysis using a visual
analytics approach by providing interactive visualizations that provide
multiple modes of exploring the data. Given this focus, we sought to
first understand the utility of the visualizations when the analysts are
given a low-level coding task. Our formative studies thus focused on
relatively lower-level and smaller-scale coding tasks that would help us
improve the framework. We followed this up with a summative study
that contained a more diverse set of tasks for a full-fledged dataset.
This section provides an overview and justification of the studies
performed, while the next sections detail the methods, participants,
and findings from these user studies. The sequence of studies is
outlined below:

• Formative Study: This study sought to identify weaknesses in the
design and implementation of VizScribe, which helped us separate
useful visual representations and interactions from redundant ones,
and enhance those that showed promise. We performed two
formative studies:
(a) Prescribed coding, to assess how participants navigated the

framework given a specific coding task (see Section 7.1); and
(b) Open coding to assess the ability of the framework to support

analysts with diverse analysis goals (see Section 7.2).

• Framework Redesign: Based on the findings from the formative
studies, we implemented changes to the framework (see Section 8).

• Summative Study: This helped us understand the versatility of
the interface in answering certain closed- and open-ended questions
of the kind that interest design researchers (see Section 9).

For each study, a brief demonstration of VizScribe and its features
was provided to the participants, after which they were allowed as
much time as they needed to familiarize themselves with the interface.
On average, participants took approximately 60 min to complete the
tasks in the formative evaluation, and 75 min in the case of the
summative evaluation.

6.1. Context: data from design sessions

Given our goal to understand design processes through a variety of
data forms, we recorded two student teams each comprising four

members) working on a design task as part of a mechanical engineering
graduate course on product design. The teams were recorded when
working on a design modification assignment that required the team to
first categorize a given toy according to its “play value” (Kudrowitz and
Wallace, 2010), and then modify it to extend and/or change the play
value. The teams used skWiki (Zhao et al., 2014)—available as open
source10—to create, exchange, and modify sketches of their ideas,
enabling us to log all sketching activity during the design session. We
created a timeline visualization of the sketching activity from the
skWiki sketch log data as shown in Fig. 4(c). Both the design sessions
were also video recorded with the consent of the participants. One team
was also fitted with wearable sociometric sensors (Olguín et al., 2009;
Kim et al., 2012) to record their speech patterns and body movements
(Fig. 10).

We used a 15 min video segment and sketch data from the team
without sociometric sensors for the formative evaluation, and the
complete 60 min segment and associated data from the team with
sociometric sensors for the summative evaluation. This decision was in
accordance with the goals of the evaluations, with the formative
evaluation focusing on studying the efficacy of providing temporal
and transcript views for coding, and the summative evaluation for
understanding high-level user behavior patterns using multiple and
integrated forms of data.

In both studies, VizScribe was run on a Google Chrome browser and
displayed on a 20 in. LCD screen. The data was uploaded and rendered
on VizScribe before the start of the experiment.

6.2. A note on the study rationale

As we have previously noted, VizScribe represents a visual analytics
approach to support the analysis of data provided by protocol studies,
and not a CAQDAS tool unto itself. This distinction is important, as
VizScribe is an exploration of the techniques existing CAQDAS tools
can use in order to better support multimodal data analysis.

Our evaluation of the framework thus focuses on the utility of the
visualizations and interactions designed with the “orient–focus–code”
paradigm in mind, first in parts in the formative study, and then as a
whole in the summative study. We chose to not conduct a comparative

Fig. 8. An overview of the high-level functions in VizScribe, showing the functions that need to be modified in order to edit or customize existing timeline visualizations, and functions
that need to be added in order to create new timeline visualizations. Fig. 9 shows conceptually how these visualizations can be customized. Templates for functions are also available in
the VizScribe source code page (see footnote 8) with detailed instructions on its Wiki.

10 https://www.github.com/karthikbadam/skWiki
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study with existing CAQDAS tools as it would be counterproductive to
the goal of this work: On the one hand, existing CAQDAS tools do not
use visual analytics approaches, while on the other hand, VizScribe
does not provide the full-fledged protocol analysis and coding support
that CAQDAS tools do.

For example, datasets such as sketching logs, or activity data from a
body-mounted sensor, are very difficult, if not impossible, to meaningfully
analyze using NVivo or other CAQDAS tools. While most CAQDAS tools
include features to integrate multiple datasets, their focus is on consolida-
tion rather than visual coherence. This also applies for research prototypes
such as Chronoviz, which focuses on event/activity timelines. For
example, the ability to filter the video timeline through word occurrences
in order to, say, focus on all the instances of the team discussing a
particular concept, is a function that is not available in such tools, and is

therefore not typically used during protocol analysis. While the advantage
of an effective visual analytics-based design of CAQDAS tools may be
illustrated through a comparative study, it would be premature for us to
attempt it, when our focus is to determine what a visual analytics-based
approach to protocol studies entails. We thus focused on evaluating
VizScribe's usefulness in qualitative analyses, particularly the effectiveness
of the interactive data visualizations.

7. Formative studies

We conducted formative studies to evaluate the use of the interface
in performing specific tasks in data navigation, and to understand the
effectiveness of the framework in performing open-ended exploration
and coding of the data.

We first used a prescribed coding scheme, requiring participants to
identify certain kinds of behavioral interaction in the design teams
during a 15-min segment of a team brainstorming session. In the
second study, participants were given a freer rein to code interactions
or behaviors that they found interesting, following an open coding
scheme. Our goal was to examine how VizScribe was used by analysts
with different analytic goals, and to identify functions that could be
changed, removed, or added to the framework.

7.1. Study I: Prescribed Coding

Closer in nature to selective coding Corbin and Strauss, 1990, we
called this task prescribed coding as we provided a core set of
behaviors that the participants were asked to code. We recruited 6
paid participants (5 male, 1 female), aged between 27 and 32 years. All
were graduate students, three of whom were experienced in ethno-
graphic analysis, and the remaining three experienced in design
process analysis. Two of the participants had prior experience in
protocol analysis.

Fig. 9. Extending or customizing a timeline visualization to fit custom time-series data involves mapping attributes of that data to a corresponding visual object. VizScribe uses D3 for
this purpose, whose data structure makes this mapping possible. The above figure illustrates how this extension is possible for three main categories of data, namely discrete time

series data where data is sampled at intervals, continuous time series data where data is read in a stream, and multidimensional data with a temporal component, where a time

series visualization needs to be augmented with additional visualizations. For all three categories, the above figure illustrates ways in which the VizScribe timeline views can be extended
to incorporate such data by mapping data attributes to geometric attributes of appropriately chosen D3 elements. Hover/click behaviors are then specified, allowing for interaction with
the data.

Fig. 10. The wearable sociometric badge used in the design session. The badge,
developed by Sociometric Solutions (now Humanyze: http://humanyze.com), measures
individual biometric data including speech events and body movement, as well as social
interactional data such as face-to-face interactions, conversational overlaps, turn-taking,
and proximal connections.
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Participants were given 60 min to familiarize themselves with the
data shown in the VizScribe interface (video, transcript, and sketch
logs). They then used the transcript data and coded instances of idea
generation, when a subject in the video comes up with an idea for the
toy design, idea extension, when a suggested idea is modified or
developed, and idea critiquing, when feedback is provided to a
suggested idea.

Following the coding session, participants answered a set of
questions providing feedback on their experience with the interface.
This included both open-ended questions on their overall experience
and feedback, and their rating of the usefulness and ease of use of
VizScribe's features on a five-point Likert scale.

7.1.1. Results
In general, participants liked the way multimodal data was pre-

sented, and found it easy to navigate in the interface. One participant
summarized: (VizScribe is a) “useful tool for observing multiple modes
of data. I was able to relate the transcript to actual body language
from the video and sketching activity. I liked how I needed minimal
instructions to use the tool. A browser based environment really
helped, as I was familiar with most browser based interactions.”

Among the participants, 100% reported that the interactive tran-
script was the most useful feature of VizScribe, while 66% reported that
the word cloud was the least useful. This is partly explained by a lack of
an appropriate motivation to use the word cloud: the visualization is
more useful for an overview of a large body of text, and a transcript of a
15-min conversation was small enough that the participants could
simply read through it. In the temporal views, 83% of the participants
reported the sketch timeline was intuitive but not relevant, partly
because this view was not linked to other visualizations, and partly
because of the small number of sketches.

Finally, with regards to coding the transcript, participants ex-
pressed the need to assign multiple overlapping codes to the same
sections of the transcript, and to to assign codes at a word-level
granularity in the transcript, i.e. select a part of a line and assign a code
to that part.

7.2. Study II: Open Coding

For the second study, to assess the breadth and flexibility of
VizScribe, we recruited two paid participants (one male, one female),
both graduate students aged 29 and 34 years. The first participant, a
curriculum and instruction student in art education, had prior experi-
ence with coding in NVivo, and the other, a student of mechanical
engineering majoring in design, had no prior experience in coding or
protocol analysis. They were asked to use an inductive open coding
technique (Glaser and Strauss, 2009)—which was first explained to the
participants—to identify interesting actions, processes, or behavior,
code such events, and categorize them hierarchically by simply
indenting the respective codes in the code editing text box.
Participants had 60 min to perform this task, followed by an open-
ended survey where they discussed the coding process they used and
their feedback on VizScribe's features. Our goal was to evaluate the
utility and ease of use of VizScribe in a real-life coding scenario, and
identify challenges that arise in data representation and coding.

7.2.1. Results
Both participants found it easy and intuitive to create multiple code

hierarchies. The code sets created by each were different, reflecting
their different backgrounds and research orientations, which supports
the goal of VizScribe providing support for grounded theory practice in
open coding. One of the issues the particpants faced was the repre-
sentation of codes on the transcript when numerous codes were
created. The color-coded display seemed to become cognitively difficult
to process when there were 10–12 colors, one for each code, painted
over the transcript. Additionally, the transcript would retain the color

of only the most recently-assigned code, thus hiding instances of
multiple codes assigned to the same section of the transcript. By
comparing the codes generated by both participants, we found that
both viewed the same dataset for approximately the same duration, and
yet created markedly different codes (Fig. 6).

8. Framework redesign

Results from formative studies helped identify features that were
useful in exploring multimodal data, and features that needed refine-
ment. Based on our observations and from the participant feedback, we
made the following enhancements to the framework.

Scale-robust timeline view: The transcript timeline visualization
became less readable when longer videos of around 60 min were used.
The visualization was thus extended to indicate, through color codes
and position, the different speakers in the visualization. A “magic lens”
local zoom was added to the view for easier selection of a visualized
element.

Text filters: The word cloud view was made more useful by
introducing more techniques for “focus” tasks explained in Section
4.2. This included the filtering tasks explained in the section, such as
word clouds specific to one speaker's utterances, word clouds specific to
certain coded parts of the transcript, or a dynamic word cloud that
updates itself to a selected block of text.

Interactive code linking: The color limitation that was faced by
using more than 12 codes was mitigated to an extent through enhanced
interactions. The code colors on the transcript were made non-
persistent, i.e. they “faded” two seconds after coding, so that transcript
legibility was not compromised. By hovering or clicking on a code in
the coded timeline view, users could reveal the corresponding color on
the transcript. This ensured that the transcript was overlaid with only
one code (color) at any point of time, making it visually less cluttered
and circumventing the problem of overlapping codes identified in the
open coding study.

Extensibility: The extensibility discussed in Section 5 was devel-
oped as a result of participants suggesting more intuitive links between
the sketch timeline and the rest of the time-sequence data, and
suggesting other datasets that could be visualized and connected to
the VizScribe timeline. We thus linked the sketch timeline to the video
timeline to enable skipping to a particular time when a sketch was
saved on the server by simply clicking on the corresponding timeline
element. The extensible, interactive timeline views were developed as a
generalization of the timeline views.

We conducted the summative study after implementing these
changes to the framework.

9. Summative study

Summative evaluations are useful when one needs to understand
high-level behavioral trends, and mental models of participant beha-
vior (Hix and Hartson, 1993). In this study, our goal was to observe
how participants use the interactive visualizations of multimodal data
to develop an awareness of events in the design session, as well as an
interpretation of the activities, roles, and processes revealed by the
data. This helped us understand the different means by which analysts
approach design protocol studies, and the versatility of the visualiza-
tions used in VizScribe to cater to these means.

9.1. Participants and procedure

We recruited ten paid participants for this study (5 female, 5 male),
all between 23 and 36 years of age. Six were PhD design majors in
mechanical engineering, two were engineering education majors (one
master's and one PhD), one was a master's student in computer
information technology with a background in teaching undergraduate
design courses, and one was a post-doctoral researcher in educational
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psychology, focusing on design education. Nine of these participants
were familiar with qualitative analysis, ranging from document analy-
sis, to interview coding, to analyzing videos of participant gestures, and
one had prior experience with CAQDAS tools (NVivo and Dedoose).
Four of the participants had used visual analytics tools such as Jigsaw
(Stasko et al., 2008).

All participants used VizScribe to complete a set of seven tasks to
analyze a 60 min design session video. In addition to the video,
transcript, and sketching data in this study, the data visualizations
also included sociometric sensor data that captured the activity levels
(from accelerometer sensors), and speech participation (speaking to
listening ratios) of each participant. The seven tasks to be completed
were:

T1 Identify the sketch/sketches that represent the final idea chosen by
the team.

T2 Identify the team member that originated the idea that eventually
evolved into this final idea, and code the part of the transcript that
refers to the first mention of this idea.

T3 Did the team discuss other ideas before they narrowed down on
one final idea? If so, describe these ideas.

T4 Code the parts of the transcript that you identify as the start and
end of the team's divergent process (ideation) and the start and end
of the team's convergent process (evaluation and selection).

T5 Using the word cloud, identify themes in each team member's
utterances.

T6 Identify and code three instances with no speech overlap between
team members, and three instances where there is speech overlap.
What behavior differences can you observe between the two
categories?

T7 Using the activity timeline, identify with timestamps three unique
instances of activity or movement, and describe them.

Tasks T1 and T2 have components that can have “correct answers”
or answers that are comparatively less open to interpretation. We used
these tasks as “ground truth” tests, to determine if the VizScribe
interface helps the participants glean such information. Tasks T3
through T7 were open-ended questions designed to assess how
VizScribe is useful in understanding aspects of the presented data that
are not immediately apparent from the video and the transcript alone.
T3 and T4 were chosen to verify whether the additional data repre-
sentations were useful when the task would otherwise involve sifting
back and forth through the transcript and video. For instance, the
sketch timeline along with the transcript could be relevant to T3,
whereas the interactive word cloud could be used to filter the transcript
when attempting T4. T5 was intended to test if the word cloud could
provide useful overviews, and T6 and T7 were included to draw the
participants’ attention to the sociometric sensor data to determine the
utility of the data and the visualizations.

We asked participants to complete surveys at multiple points
during the data analysis session, so that we could provide probes
pertaining to specific tasks immediately after the task was executed.
The final survey asked participants about the utility of specific features
such as the coordinated data representations, and the interactive
transcript display, as well as an overall rating of VizScribe using the
System Usability Scale (SUS) (Brooke, 1996).

9.2. Results and discussion

In analyzing both participant feedback and the logs of their
interactions with the different features of VizScribe, we found a few
patterns in the features of VizScribe that they used for certain kinds of
tasks. We found that they used the filtering aspect of the word cloud to
search or navigate the dataset for specific answers. On the other hand,
for the more interpretive tasks, participants tended to use different
features for the same tasks, illustrating a richness that VizScribe affords

in visualizing data. Finally, the alternate, nonverbal timeline visualiza-
tions, provided a new lens for participants with which to view the
design process, and form new associations between kinds of behavior.
These and other findings are discussed in this section.

Participants spent an average of 75 min for all tasks combined, but
there was considerable variation between participants across the tasks.
On average, T3, T4, and T6 were the most time-consuming tasks. T3
and T4 were expected to take more time as they required exploration of
almost the entire design process using the speech and text timeline. T6
required the use of speech overlap data from the sociometric sensors,
and the high number of the overlap events made it difficult for the
participants to sift through the view. Table 1 presents the mean task
times for each of the seven tasks.

Examining participant performance in these tasks, we found that
among the “closed-ended” tasks, all ten participants correctly identified
the sketch chosen by the team (T1), and 80% of the participants
correctly identified the author of the corresponding idea (T2). Even the
two who answered differently were not necessarily wrong: they chose
the participant who had sketched the idea, and not the member who
originated the idea. The consistency of the answers to these tasks
attests to the veracity and legibility of the data representations.

From the analysis of the participant activity logs, we can see that
the transcript timeline and the sketch timeline were the most used,
especially in tasks T1 through T4. These were tasks that required the
participants to understand the process followed in the recorded design
session (Fig. 11). The word cloud, however, was used sparingly for this
analysis. In design protocol analysis, sketches and verbalizations are
the chief ways in which designers externalize their thoughts, and it thus
follows that interactive timeline visualizations of this data would be the
most used to understand the process. Tasks T5, T6, and T7 were
designed to utilize the word cloud and the speech participation and
activity timelines respectively.

The most interesting interactions of the participants involved
filtering and navigating text views, using different visualizations for
the same task, and observations of the video-recorded behavior by
interacting with activity sensors, which we discuss briefly below:

Filtered navigation: Participants used the word cloud as a filter for
the transcript view, especially when performing a focused search for a
specific idea generated by the design team. In completing T2, for
example, after identifying the final product was a board game, the
participants used the word cloud and its link with the transcript (text
and timeline) to filter for all occurrences of the word “board”. One
participant explains: “there were many cases where I saw an inter-
esting pattern on the timeline, watched the video, read the transcript,
found a word, and then saw where else it occurred in order to see if
there was a pattern.” By focusing on these filtered sections of the
transcript, participants were able to identify the right instance at which
the idea was first discussed. Task T5 explicitly required the use of the
word cloud, where participants were to identify themes from each video
subject's utterances, preferably using the “filter by speaker” technique
explained in Fig. 5. However, in addition to this, three participants
tagged the same subject as the leader of the team captured in the

Table 1
Mean task completion times with standard deviations.

Task Duration (min)

Mean SD

T1 Identify final idea 06:45 03:42
T2 Identify originator of final idea 09:07 03:27
T3 Describe other ideas discussed 11:14 04:55
T4 Identify start & end of ideation & selection 19:20 08:27
T5 Identify themes for each team member 09:08 03:47
T6 Describe 3 instances with & without speech overlap 12:33 04:58
T7 Describe 3 unique activity instances 05:58 02:45
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video—an unexpected and interesting use of the word cloud to
determine subject role/personality. This form of subject characteriza-
tions through a summary view, while convenient, can be antithetical to
the rigor of good coding practice. This is the space that the VizScribe
framework occupies: it allows the analyst to skim through a larger
dataset, identify questions of interest, and focus on these questions
while examining the details.

Multiple approaches to explore datasets: We also observed that the
multiple views of the data allowed participants to use diverse analytic
approaches: different participants oriented themselves differently in
the dataset, and thus picked different “entry points” –most notably, the
transcript timeline, sketch timeline, and transcript text views (see
Fig. 11). This makes sense: conceptual design predominantly involves
sketches and explanations of these sketches, when working in a team.

This use of diverse entry points has the potential to support broader
research questions, accommodating the analyst in choosing from a
variety of paths from which to approach the questions. In the example
above, providing representations of both speech and sketch activities to
the analysts allows them the flexibility of choosing the data representa-
tion based on the research question being asked. It would thus seem
that it is not just the dataset that determines the most useful
representation, but also the user who determines it. While this may
seem obvious, this insight is often missing from most CAQDAS tools:
there are few alternate representations of the same dataset.

Temporal correlation of multiple data streams: Task T7 required
participants to pay attention to the activity timeline view, and note
unique instances and corresponding subject activity in the video. This
was done to raise the participants’ awareness of the usefulness of such
representations. Sure enough, participants found that they could not
only make note of larger events such as subjects leaving the room, but
also smaller instances of them leaning across a table, or even picking up
a toy from the table. One participant remarked “traditionally, it has
been difficult to track down the correlation between verbal behavior
with gestures, sketching behaviors. With the help of these features,
researchers would have a much easier time to pinpoint the relations

between these behaviors.” Interactive visualizations of such data thus
provides an opportunity to assess both macro-level behaviors such as
entering and exiting spaces, as well as micro-level behaviors such as
gestures and object manipulation.

The framework usability received a mean rating 75.5/100 on the
SUS, which is “acceptable” on the acceptability range and “good” on
the adjective ratings (Bangor et al., 2009). Fig. 12 illustrates the
response distribution for the SUS. The average SUS rating by partici-
pants with a prior background in infovis was 79.4, while the rating by
participants without this background was 72.9. While there is a fair
difference between the two group ratings, both scores fall within the
same acceptability and adjective ranges as the overall mean rating. The
difference between the groups is understandable given the short
exposure the participants had to the interface: participants more
familiar with interactive visualizations would be expected to adapt
quicker to the interface. A more accurate measure of the usability of
this system will need a longer-term study, which is outside the scope of
this work. Participants’ subjective feedback was largely positive, with
the best summing-up provided by one participant who had worked with
CAQDAS tools (but had no background in infovis): “The tool is a great
synthesis of what other tools have been missing, as I have used them.”

10. Implications for qualitative analysis

The process of qualitative data analysis is aptly described by
Creswell (2012, p. 182) as a “data analysis spiral.” This spiral
represents organization and management of data, reading, reflecting,
annotating the data, identifying and comparing contexts and cate-
gories, interpreting and describing, as well as representing and
visualizing the data. Data analysis is an iterative process, involving
alternating deep dives into the data, perusing and annotating to get a
sense of the data as a whole, examining it in parts to identify patterns of
interest, as well as winnowing it to select information of relevance.
Drisko (2013) emphasizes how qualitative data analysis software has
made possible research endeavors into multimedia data, by allowing

Fig. 11. Task-wise usage of the different elements of VizScribe, aggregated over all participants. Views such as the word cloud, the transcript timeline, and the sketch timeline can be
deemed the most versatile, since they are used across most of the tasks. The distribution shows that most of the exploration of the provided dataset occurs through the “sketch timeline”:
the view showing the creation and development of every sketch by the subjects in the video.

Fig. 12. The System Usability Study (SUS) scores shown category-wise, aggregated over all participants. Plots in orange are better when lower, while plots in blue are better when
higher. An mean rating of 75.5/100 was obtained.
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the display of images, audio, and video, and the relationships between
data that can be inferred directly on images or indirectly on video/
audio timelines.

A visual analytics approach such as ours allows qualitative re-
searchers to visualize and interpret design behaviors through new data
forms that are linked to traditional text and video data. These data
provide the grounding for “thick” descriptions of design behavior
(Geertz, 1973) that provide contextualized explanations. For example,
an unusually high level of movement activity on the timeline can be
directly queried to view in the video the movement of the design team
into or out of the room, or to a display wall to collaboratively sketch or
discuss a design. The sketch timeline can reveal, at the same time, the
design under discussion. Selecting the transcript around this time
updates the word cloud to provide an overview of key concepts under
discussion in that moment.

Sensors such as eye-tracking sensors, EEG sensors, and inertial
measurement units provide data that allow additional dimensions to be
considered and new insights gleaned. VizScribe provides a general
framework for the visualization and analysis of rich datasets, allowing
the researcher to create meaningful visualizations of new data forms
(as shown in Fig. 9), that are linked to traditional text and video data.
We previously discussed how this enables functions such as filtered
navigation, multiple approaches to explore datasets, and temporal
correlation of multiple data streams that allows participants to access,
interpret, and integrate sensor data. VizScribe thus moves beyond
existing computer-based qualitative analysis tools to provide support
for analyzing both traditional as well as emerging forms of qualitative
data.

Qualitative data analysis requires that the analyst familiarize
themselves with every bit of the data. VizScribe provides a framework
to allow a deeper, holistic, and integrated analysis and interpretation of
this data and its connection to other related data. It supports micro-
level analysis of specific temporal slices, using cross-sectional data as
well as macro-level longitudinal timeline analysis of aggregated data.
By viewing synchronized and integrated data and understanding them
in specific temporal and textual contexts, interpretations of design
behavior are more fully contextualized and better reflective of the
design process.

11. Limitations and future work

VizScribe has been designed for navigation and coding of data that
otherwise cannot be easily visualized into a single, dashboard view. To
an extent, this requires pre-processed data, for example, all data needs
to be time-stamped, transcripts benefit from speaker identification, and
so on. While the coded data can be exported from VizScribe for
additional analyses, VizScribe would be a more effective tool if it
offered end-to-end processing and analytics required for qualitative
analysis. We envision the following future enhancements to VizScribe:

Preprocessing: This involves both the implementation of algo-
rithms such as the Penn Phonetics Lab Forced Aligner (Yuan and
Liberman, 2008) for synchronizing the transcript to the audio track, as
well as allowing interactive selection and customization of the informa-
tion visualizations used. The current implementation allows customi-
zation when performed programmatically. However, based on the data
imported (keylogs, browsing data, biometric data), the user should be
allowed to interactively select appropriate visualizations.

Data-aware annotation and coding: VizScribe currently has the
framework for allowing multiple timeline visualizations, but not timeline-
level coding. This is particularly important for coding sketches, movements
across the design space, gestures, and so on. Our future plans include a data
representation of codes applied directly on the timeline, and consolidated
together with all representations. Additionally, the absence of data—be it
radio silence, video inactivity, or audio silence—is often as significant as the
presence of data. Thus, gaps in the visualizations, where no geometric or
text entity is displayed, need also be amenable to navigation and coding.

Analytics: The next step for VizScribe would be to incorporate
visual analytics to process the data for a higher-level exploration. This
includes, but is not limited to, features such as named entity recogni-
tion and tagging, parts-of-speech tagging, semantic distance-based
filtering of the transcript based on the defined codes. Sociometric data
would also benefit from such analytics to better support embodied and
socio-material interactions. Additional use of analytics would be in
processing the coded data to provide meaningful results. This can
include inter-coder reliability calculations and axial coding, which
includes the ability to generate matrices to compare instances tagged
with intersecting codes.

Collaborative coding: VizScribe's web-based implementation al-
lowed us to provide a platform-independent solution making effective
use of data-driven representations that are now available for the web
browser. However, this client-server framework also gives us the ability
to enable collaborative coding. Participants should be able to log in to
access the same dataset and compare their coding process with others.
This can find application in training novices in the coding process,
where they can overlay their codes with that of an expert for
comparison.

Dissemination: With visualization toolkits such as D3, the web
browser has already become a medium for both generation and
dissemination of visual representations. Future work in VizScribe will
also look at means to export the final data and analyses into reports or
presentations.

12. Conclusion

We have outlined the requirements of design protocol analysis
tools, emphasizing the need for building custom timeline views so that
the analyst can set up their own visual representations of design
activity. We then presented VizScribe, a visual analytics-based frame-
work for representing and exploring design protocols. Our framework
bridges a gap that is currently not addressed by existing qualitative
data analysis tools, namely, the processing and presentation of new and
emerging forms of data such as sensor data and user log data. VizScribe
imports video, transcript, and other log data, and uses linked and
interactive representations for the user to navigate and explore, code,
and export the data. We refined and enhanced visualizations and
interaction modes of the framework by conducting formative studies.
We then performed a summative evaluation of VizScribe, through
which we showed the advantages of (a) filtered navigation, in helping
identify context-specific patterns in the multimodal data visualizations,
(b) multiple ways for analysts to approach the same dataset, and (c)
supporting the identification of verbal and non-verbal relations within
datasets. Finally, we found that the transcript, timeline, and sketch
views were versatile visualizations, with custom views bringing newer
ways of navigating the dataset and obtaining newer insights.
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