LEARNING IN THE DISCIPLINES

ICLS 2010 CONFERENCE PROCEEDINGS
VOLUME 1 - FULL PAPERS

9TH INTERNATIONAL CONFERENCE OF THE LEARNING SCIENCES
JUNE 28 - JULY 2, 2010, CHICAGO
UNIVERSITY OF ILLINOIS AT CHICAGO, ILLINOIS, USA

EDITORS:
Kimberly Gomez, Leilah Lyons, and Joshua Radinsky
ICLS2010 CONFERENCE SPONSORS

NATIONAL SCIENCE FOUNDATION

LEARNING SCIENCES RESEARCH INSTITUTE OF THE UNIVERSITY OF ILLINOIS AT CHICAGO

NORTHWESTERN UNIVERSITY

SPENCER FOUNDATION

THE CHICAGO COMMUNITY TRUST

MACARTHUR FOUNDATION

NATIONAL GEOGRAPHIC

THE RESEARCH JOURNAL FOR ENGINEERING EDUCATION

INQUIRIUM
Conference Organization

Conference Co-Chairs
Susan Goldman, *University of Illinois at Chicago, US*
James Pellegrino, *University of Illinois at Chicago, US*

Business Manager
Deana Donzal
University of Illinois at Chicago, US

Communications Chair
Leilah Lyons
University of Illinois at Chicago, US

Workshops Co-Chairs
Tom Moher
University of Illinois at Chicago, US
Eleni Kyza
Cyprus University of Technology, Cyprus

Doctoral Consortium Co-Chairs
Cindy Hmelo-Silver
Rutgers University, US
Jerry Andriessen
Utrecht University, Netherlands

Program Co-Chairs
Kimberly Gomez
University of Pittsburgh, US
Joshua Radinsky
University of Illinois at Chicago, US

Special Sessions Chair
Alison Castro-Superfine
University of Illinois at Chicago, US

Early Career Workshop Co-Chairs
Susan Yoon
University of Pennsylvania, US
Paul Kirschner
Open University, Netherlands

Conference Advisory Board Members

<table>
<thead>
<tr>
<th>Name</th>
<th>Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kate Bielaczyk</td>
<td>National Institute of Education, Singapore</td>
</tr>
<tr>
<td>Ton DeJong</td>
<td>Twente University, Netherlands</td>
</tr>
<tr>
<td>Pierre Dillenbourg</td>
<td>Swiss Federal Institute of Technology, Switzerland</td>
</tr>
<tr>
<td>Daniel Edelson</td>
<td>National Geographic Society, US</td>
</tr>
<tr>
<td>Frank F. Fischer</td>
<td>University of Munich, Germany</td>
</tr>
<tr>
<td>Kris Gutierrez</td>
<td>University of Colorado at Boulder, US</td>
</tr>
<tr>
<td>Janet Kolodner</td>
<td>Georgia Tech University, US</td>
</tr>
<tr>
<td>Joe Krajcik</td>
<td>University of Michigan, US</td>
</tr>
<tr>
<td>Eleni Kyza</td>
<td>Cyprus University of Technology, Cyprus</td>
</tr>
<tr>
<td>Marcia Linn</td>
<td>University of California at Berkeley, US</td>
</tr>
<tr>
<td>Claire O'Malley</td>
<td>University of Nottingham, UK</td>
</tr>
<tr>
<td>Nichole Pinkard</td>
<td>DePaul University, US</td>
</tr>
<tr>
<td>Jim Slotta</td>
<td>Ontario Institute for Studies in Education</td>
</tr>
<tr>
<td>Hans Spada</td>
<td>University of Freiburg, Germany</td>
</tr>
<tr>
<td>Iris Tabak</td>
<td>Ben Gurion University of the Negev, Israel</td>
</tr>
<tr>
<td>Kate Bielaczyk</td>
<td>National Institute of Education, Singapore</td>
</tr>
<tr>
<td>Ton DeJong</td>
<td>Twente University, Netherlands</td>
</tr>
<tr>
<td>Pierre Dillenbourg</td>
<td>Swiss Federal Institute of Technology, Switzerland</td>
</tr>
<tr>
<td>Daniel Edelson</td>
<td>National Geographic Society, US</td>
</tr>
<tr>
<td>Frank F. Fischer</td>
<td>University of Munich, Germany</td>
</tr>
<tr>
<td>Kris Gutierrez</td>
<td>University of Colorado at Boulder, US</td>
</tr>
<tr>
<td>Janet Kolodner</td>
<td>Georgia Tech University, US</td>
</tr>
<tr>
<td>Joe Krajcik</td>
<td>University of Michigan, US</td>
</tr>
<tr>
<td>Eleni Kyza</td>
<td>Cyprus University of Technology, Cyprus</td>
</tr>
<tr>
<td>Marcia Linn</td>
<td>University of California at Berkeley, US</td>
</tr>
<tr>
<td>Claire O'Malley</td>
<td>University of Nottingham, UK</td>
</tr>
<tr>
<td>Nichole Pinkard</td>
<td>DePaul University, US</td>
</tr>
<tr>
<td>Jim Slotta</td>
<td>Ontario Institute for Studies in Education</td>
</tr>
<tr>
<td>Hans Spada</td>
<td>University of Freiburg, Germany</td>
</tr>
<tr>
<td>Iris Tabak</td>
<td>Ben Gurion University of the Negev, Israel</td>
</tr>
</tbody>
</table>

Program Committee Members

<table>
<thead>
<tr>
<th>Name</th>
<th>Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dor Abrahamson</td>
<td>University of California at Berkeley, US</td>
</tr>
<tr>
<td>Angela Calabrese-Barton</td>
<td>Michigan State University, US</td>
</tr>
<tr>
<td>Ravit Duncan</td>
<td>Rutgers University, US</td>
</tr>
<tr>
<td>Cesar Cisneros Puebla</td>
<td>Universidad Autónoma Metropolitana, Mexico</td>
</tr>
<tr>
<td>Janice Gobert</td>
<td>Worcester Polytechnic Institute, US</td>
</tr>
<tr>
<td>Kim Lawless</td>
<td>University of Illinois Chicago, US</td>
</tr>
<tr>
<td>Paul Marshall</td>
<td>The Open University, UK</td>
</tr>
<tr>
<td>Naomi Miyake</td>
<td>Chukyo University, Japan</td>
</tr>
<tr>
<td>Brian K. Smith</td>
<td>Rhode Island School of Design, US</td>
</tr>
<tr>
<td>Reed Stevens</td>
<td>Northwestern University, US</td>
</tr>
</tbody>
</table>

IV • © ISLS
<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pictorial illustrations in intelligent tutoring systems: Do they distract or elicit interest and engagement?</td>
<td>1</td>
</tr>
<tr>
<td>Ulrike Magner, Rolf Schwonke, Alexander Renkl, Vincent Aleven, Octav Popescu</td>
<td></td>
</tr>
<tr>
<td>Joachim Kimmerle, Ulrike Cress, Christoph Held, Johannes Moskaliuk</td>
<td></td>
</tr>
<tr>
<td>The Influence of Presentation Format and Subject Complexity on Learning from Illustrated Texts in Biology</td>
<td>17</td>
</tr>
<tr>
<td>Mareike Florax, Rolf Ploetzner</td>
<td></td>
</tr>
<tr>
<td>An invisible preference for intrinsic motivation in Computer-Mediated Communication</td>
<td>25</td>
</tr>
<tr>
<td>Bart Rienties, Dirk Tempelaar, Bas Giesbers, Mien Segers, Wim Gijselaers</td>
<td></td>
</tr>
<tr>
<td>Investigating pre-service elementary teachers' epistemologies when talking about science, enacting science and reflecting on their enactment</td>
<td>33</td>
</tr>
<tr>
<td>Loucas T. Louca, Dora Tzialli, Zacharias C. Zacharia</td>
<td></td>
</tr>
<tr>
<td>Exploring how novice teachers learn to attend to students in analyzing case studies of classroom teaching and learning</td>
<td>41</td>
</tr>
<tr>
<td>Daniel Levin, Jennifer Richards</td>
<td></td>
</tr>
<tr>
<td>Collaborative Productivity as Self-Sustaining Processes in a Grade 4 Knowledge Building Community</td>
<td>49</td>
</tr>
<tr>
<td>Jianwei Zhang, Richard Messina</td>
<td></td>
</tr>
<tr>
<td>Extending the Self-Explanation Effect to Second Language Grammar Learning</td>
<td>57</td>
</tr>
<tr>
<td>Ruth Wylie, Kenneth Koedinger, Teruko Mitamura</td>
<td></td>
</tr>
<tr>
<td>Stressed yet Motivated: Web-Based Peer Assessed Competition as an Instructional Approach in Higher Education</td>
<td>65</td>
</tr>
<tr>
<td>Ronen Hammer, Miki Ronen, Dan Kohon-Vacs</td>
<td></td>
</tr>
<tr>
<td>Assessing Change in Learner’s Causal Understanding Using Sequential Analysis and Causal Maps</td>
<td>73</td>
</tr>
<tr>
<td>Allan Jeong</td>
<td></td>
</tr>
<tr>
<td>The Epistemography of Urban and Regional Planning 912: Appropriation in the face of resistance</td>
<td>81</td>
</tr>
<tr>
<td>Elizabeth Bagley, David Williamson Shaffer</td>
<td></td>
</tr>
<tr>
<td>Assessing the Development of Expertise in an Historical-Based Science: The Case of Integrative Archeology</td>
<td>89</td>
</tr>
<tr>
<td>Inbal Flash Gvili, Jeff Dodick</td>
<td></td>
</tr>
<tr>
<td>Teachers Collaborating with Wiki: The Impact of Professional Status, Language, and Age</td>
<td>97</td>
</tr>
<tr>
<td>Yael Poyas</td>
<td></td>
</tr>
<tr>
<td>The use of a digital dance mat for training kindergarten children in a magnitude comparison task</td>
<td>105</td>
</tr>
<tr>
<td>Ulrike Cress, Ursula Fischer, Moeller Korbinian, Sauter Claudia, Nuerk Hans-Christoph</td>
<td></td>
</tr>
<tr>
<td>Teacher-education students’ views about knowledge building theory and practice</td>
<td>113</td>
</tr>
<tr>
<td>Huang-Yao Hong, Fei-Ching Chen, Ching Sing Chai, Wen-Ching Chan</td>
<td></td>
</tr>
<tr>
<td>Design-based knowledge building practices in mathematics teaching</td>
<td>121</td>
</tr>
<tr>
<td>Huang-Yao Hong, Yu-Han Chang</td>
<td></td>
</tr>
<tr>
<td>Centering a Professional Learning Community on a Learning Progression for Natural Selection: Transforming Community, Language, and Instructional Practice</td>
<td>129</td>
</tr>
<tr>
<td>Erin Marie Furtak, Deborah Morrison, Kathleen Henson, Sarah A. Roberts</td>
<td></td>
</tr>
<tr>
<td>Ji Shen, Ou Lydia Liu, Hsin-Yi Chang</td>
<td></td>
</tr>
</tbody>
</table>
Using changes in framing to account for differences in a teacher's classroom behavior
Jennifer Lineback, Fred Goldberg

Explaining across contrasting cases for deep understanding in science: An example using interactive simulations
Catherine C. Chase, Jonathan T. Shemwell, Daniel L. Schwartz

Conceptual Confusion in the History Classroom
Chava Shule-Sagiv

"Let the Players Play!" and Other Earnest Remarks about Videogame Authorship
Paul Teske, Teale Fristoe

A Closer Look at the Split Attention Effect: Integrated Presentation Formats for Troubleshooting Tasks
Markus Huff, Vera Bauhoff, Stephan Schwan

Facilitating Group Learning in Science Laboratory Courses Using Handheld Devices
Chen-Wei Chung, Wang-Hsin Kuo, Chen-Chung Liu

Examining Preservice Teachers' Ability to Attend and Respond to Student Thinking
Vicky Piiltsis, Ravit Golan Duncan

Changes in Teachers' Ability to Design Inquiry-Based Lessons During a Two-Year Preparation Program
Augusto Macalalag Jr, Ravit Golan Duncan

Effects of On-line Collaborative Argumentation Processes on Justifications
Jingyan Lu, Ming Ming Chiu, Nancy Law

Dispositions, disciplines, and marble runs: A case study of resourcefulness
Margaret Carr, Jane McChesney, Bronwen Cowie, Robert Miles-Kingston, Lorraine Sands

Reading in the Context of Online Games
Constance Steinkuehler, Catherine Compton-Lilly, Elizabeth King

Group Awareness of Social and Cognitive Behavior in a CSCL Environment
Chris Phielix, Frans Prins, Paul Kirschner

The Impact of a Media-Rich Science Curriculum on Low-Income Preschoolers' Science Talk at Home
William R. Penuel, Lauren Bates, Shelley Pasnik, Eve Townsend, Lawrence P. Gallagher, Carlin Llorente, Naomi Hupert

Scaffolding students in evaluating the credibility of evidence using a reflective web-based inquiry environment on Biotechnology
Iolie Nicolaidou, Eleni Kyza, Frederiki Terezian, Andreas Hadjichambis, Dimitris Kafouris

Arguing with Peers: Examining Two Kinds of Discourse and Their Cognitive Benefits
David Shaenfield

Eliciting and Developing Students' Ideas and Questions in a Learner-Centered Environmental Biology Unit
Christopher J. Harris, Rachel S. Phillips, William R. Penuel

Mentor Modeling: The internalization of modeled professional thinking in an epistemic game
Padraig Nash, David Williamson Shaffer

Where to Find the Mind: Identifying the Scale of Cognitive Dynamics
Luke Conlin, Ayush Gupta, David Hammer

Representational Technology For Learning Mathematics: An Investigation of Teaching Practices in Latino/a Classrooms
Phil Vahey, Teresa Lara-Meloy, Judith Moschkovich, Griselda Velazquez

Interpreting Elementary Science Teacher Responsiveness Through Epistemological Framing
April Cordero Maskiewicz, Victoria Winters
Representational practices in the activity of student-generated representations (SGR) for promoting conceptual understanding

Orit Parnafes

Tracing knowledge re-organization - a fine grain analytical framework for looking at students' developing explanations

Orit Parnafes

Perceptions of the relationship between evolutionary theory and biblical explanations of the origins of life and their effects on the learning of evolution among high school students

Pratchayapong Yasri, Rebecca Mancy

Interactional Achievement of Shared Mathematical Understanding in a Virtual Math Team

Murat Cakir, Gerry Stahl, Alan Zemel

Equity in Scaling Up SimCalc: Investigating Differences in Student Learning and Classroom Implementation

Jeremy Roschelle, Jessica Pierson, Susan Empson, Nicole Shechtman, Margie Dunn, Deborah Tatar

Distributed Creativity Within a Community of Student Instructional Designers

Richard West

Students' Meaning Making in a Mobile Assisted Chinese Idiom Learning Environment

Lung-Hsiang Wong, Chee-Kuen Chin, Chee-Lay Tan, May Liu, Cheng Gong

Group Micro-creativity in Online Discussions: Effects of New Ideas and Social Metacognition

Gaowei Chen, Ming Ming Chiu, Zhan Wang

Concrete vs. Abstract Problem Formats: A Disadvantage of Prior Knowledge

Andrew Heckler

Tension resolution as pattern for practice transformation in interdisciplinary teamwork in professional development

Patrick Sins

Math Engaged Problem Solving in Families

Shelley Goldman, Roy Pea, Kristen Pilner Blair, Osvaldo Jimenez, Angela Booker, Lee Martin, Indigo Esmonde

Transformative professional development: Cultivating concern with others' thinking as the root of teacher identity

Rachel E. Scherr, Hunter G. Close

Scaffolding Children's Understanding of the Fit Between Organisms and their Environment In the Context of the Practices of Science

Kathleen Metz, Stephanie Sisk-Hilton, Eric Berson, Uyen Ly

Learning physics as coherently packaging multiple sets of signs

Kristine Lund, Karine Becu-Robinault

Digital art-making as a representational process

Erica Rosenfeld Halverson

Kindergarten and First-Grade Students' Representational Practices While Creating Storyboards of Honeybees Collecting Nectar

Joshua Danish, David Phelps

When Students Speak, Who Listens? Constructing Audience in Classroom Argumentation

Leema Berland, Andrea Forte

"Ideas First" in Collaborative Second Language (L2) Writing: An Exploratory Study

Yun Wen, Wenli Chen, Chee-Kit Looi
<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Large Scale Analysis of Student Workbooks: What Can We Learn About Learning?</td>
<td>444</td>
</tr>
<tr>
<td>Nicole Shechtman, Jeremy Roschelle</td>
<td></td>
</tr>
<tr>
<td>Motivation To Transfer Revisited</td>
<td>452</td>
</tr>
<tr>
<td>Andreas Gegenfurtner, Marja Vaaras, Hans Gruber, Dagmar Festner</td>
<td></td>
</tr>
<tr>
<td>Known Knowns and Unknown Knowns: Multiple Memory Routes to Improved Numerical Estimation</td>
<td>460</td>
</tr>
<tr>
<td>Dav Clark, Michael Ranney</td>
<td></td>
</tr>
<tr>
<td>The Role of Concretization in Acquiring Design Knowledge</td>
<td>468</td>
</tr>
<tr>
<td>Tamar Ronen-Fuhrmann, Yael Kali</td>
<td></td>
</tr>
<tr>
<td>Representational Scripting to Support Students' Online Problem-solving Performance</td>
<td>476</td>
</tr>
<tr>
<td>Bert Slof, Gijsbert Erkens, Paul Kirschner</td>
<td></td>
</tr>
<tr>
<td>Extending Students' learning Spaces: Technology-Supported Seamless Learning</td>
<td>484</td>
</tr>
<tr>
<td>Wenli Chen, Peter Sen Kee Seow, Hyo-Jeong So, Yancy Toh, Chee-Kit Looi</td>
<td></td>
</tr>
<tr>
<td>A Tempest in a Teapot Is but a Drop in the Ocean: Action-Objects in Analogical Mathematical Reasoning</td>
<td>492</td>
</tr>
<tr>
<td>Dor Abrahamson</td>
<td></td>
</tr>
<tr>
<td>Quiet Captures: A Tool for Capturing the Evidence of Seamless Learning with Mobile Devices</td>
<td>500</td>
</tr>
<tr>
<td>Ivica Boticki, Hyo-Jeong So</td>
<td></td>
</tr>
<tr>
<td>Andreas Gegenfurtner, Anna Siewiorek</td>
<td></td>
</tr>
<tr>
<td>Delinquent or criminal? - How to foster conceptual understanding of technical terms in computer-mediated collaborative learning.</td>
<td>516</td>
</tr>
<tr>
<td>Elisabeth Paus, Gisela M. Gerhards, Regina Jucks</td>
<td></td>
</tr>
<tr>
<td>Leading to Win: The Influence of Leadership Styles on Team Performance during a Computer Game Training</td>
<td>524</td>
</tr>
<tr>
<td>Anna Siewiorek, Andreas Gegenfurtner</td>
<td></td>
</tr>
<tr>
<td>Validation of a Learning Progression: Relating Empirical Data to Theory</td>
<td>532</td>
</tr>
<tr>
<td>Nicole Shea, Ravit Golan Duncan</td>
<td></td>
</tr>
<tr>
<td>What counts as scientific practice? A taxonomy of scientists' ways of thinking and doing</td>
<td>540</td>
</tr>
<tr>
<td>Lori Takeuchi</td>
<td></td>
</tr>
<tr>
<td>Analyzing Collaborative Knowledge Construction in Secondary School Biology</td>
<td>548</td>
</tr>
<tr>
<td>Vanessa Peters, James D. Slotta</td>
<td></td>
</tr>
<tr>
<td>Spatial Intelligence and the Research - Practice Challenge</td>
<td>556</td>
</tr>
<tr>
<td>Moshe Krakowski, Kristin Ratliff, Louis Gomez, Susan Levine</td>
<td></td>
</tr>
<tr>
<td>Personal beliefs about learning and teaching: Comparison of student teachers in the sciences and humanities at different stages of their studies</td>
<td>564</td>
</tr>
<tr>
<td>Natalia Schlichter, Rainer Watermann, Matthias Näckles</td>
<td></td>
</tr>
<tr>
<td>A Longitudinal Approach to Appropriation of Science Ideas: A Study of Students' Trajectories in Thermodynamics</td>
<td>572</td>
</tr>
<tr>
<td>Olivia Levrini, Paola Fantini, Barbara Pecori, Marta Gagliardi, Mariateresa Scaronella, Giulia Tasquier</td>
<td></td>
</tr>
<tr>
<td>Designing Assessments to Track Student Progress</td>
<td>580</td>
</tr>
<tr>
<td>Namsoo Shin, Shawn Stevens, Joseph Krajcik</td>
<td></td>
</tr>
<tr>
<td>Discourse as a lens for reframing consideration of learning progressions</td>
<td>588</td>
</tr>
<tr>
<td>Alicia C. Alonzo</td>
<td></td>
</tr>
</tbody>
</table>
Examining the Role of Verbal Interaction in Team Success on a Design Challenge

Xornam S. Apedoe, Kristina V. Mattis, Bianca Rowden-Quince, Christian D. Schunn

Implementing a Lesson Plan Vs. Attending to Student Inquiry: The Struggle of a Student-Teacher During Teaching Science

Loucas T. Louca, Maria Santis, Dora Tzialli

'I study features; believe me, I should know!': The mediational role of distributed expertise in the development of student authority

Jennifer Langer-Osuna, Randi Engle

Digital Video Tools in the Classroom: Empirical Studies on Constructivist Learning with Audio-visual Media in the Domain of History

Carmen Zahn, Karsten Krauskopf, Roy Pea, Friedrich W. Hesse

The Epistemography of Journalism 335: Complexity in developing journalistic expertise

David Hatfield, David Williamson Shaffer

Which science disciplines are pertinent? -Impact of epistemological beliefs on students' choices

Torsten Porsch, Rainer Bromme

Free, open, online, mathematics help forums: The good, the bad, and the ugly

Carla van de Sande

Activity-Theoretical Research on Science Teachers' Expertise and Learning

Cory Forbes, Cheryl Madeira, James D. Slotta

Using conceptual blending to describe emergent meaning in wave propagation

Michael Wittmann

Adapting Workflow Technology to Design-Based Research: Development of a Method for Organizing the "Messiness" of Research in Technology-Rich Online Learning Environments

Alan J. Hackbarth, Sharon Derry, Brendan R. Eagan, Julia Gressick

Coordinating Collaborative Problem-solving Processes by Providing Part-task Congruent Representations

Bert Slof, Gijsbert Erkens, Paul Kirschner

Writing and commenting on professional procedures: In search of learning designs promoting articulation between school and workplace learning.

Monica Gavota, Mireille Betrancourt, Daniel Schneider

Complexity, Robustness, and Trade-Offs in Evaluating Large Scale STEM Education Programs

Susan A. Yoon, Lei Liu

Exploring Convergence of Science Ideas through Collaborative Concept Mapping

Dana Gnesdilow, Anushree Bopardikar, Sarah Sullivan, Sadhana Puntambekar

Embodied Experiences within an Engineering Curriculum

Molly Bolger, Marta Kobiela, Paul Weinberg, Rich Lehrer

Romantic beats "classic": New insights on the effects of self-regulation on learning by writing

Isabel Braun, Susanne Philippi, Matthias Nückles

Teacher Learning about Teacher-Parent Engagement: Shifting Narratives and a Proposed Trajectory

Corey Drake, Angela Calabrese Barton

Effects of Instructional Design Integrated With Ethnomathematics: Attitudes And Achievement

Melike Kara, Ayseanur Yontar Togrol

The impact of web-based collaborative inquiry for science learning in secondary education

Annelies Raes, Tammy Schellens, Bram De Wever
Reconceptualizing Mathematical Learning Disabilities: A Diagnostic Case Study
Katherine Lewis

Sharing Educational Scenario Designs in Practitioner Communities
Astrid Wichmann, Jan Engler, Ulrich Hoppe

Preparing for the Long Tail of Teaching and Learning Tools
Charles Severance, Stephanie D. Teasley

Students' Use of Multiple Strategies for Spatial Problem Solving
Mike Stieff, Minjung Ryu, Bonnie Dixon

What Are They Talking About? Findings from an Analysis of the Discourse in Peer-Led Team Learning In General Chemistry
Patrick Brown, R. Keith Sawyer, Regina Frey, Daniel Gealy, Sarah Luesse

A Web-based Reading Environment Designed to Fundamentally Extend Readers' Interaction with Informational Texts
Khusro Kidwai

Helping Students Make Controlled Experiments More Informative
Kevin McElhaney, Marcia Linn

Fading Instructional Scripts: Preventing Relapses into Novice Strategies by Distributed Monitoring
Christof Wecker, Frank Fischer

Student learning through journal writing in a natural science course for pre-elementary education majors
Michael Dianovsky, Donald Wink

Fostering Online Search Competence and Domain-Specific Knowledge in Inquiry Classrooms: Effects of Continuous and Fading Collaboration Scripts
Christof Wecker, Ingo Kollar, Frank Fischer, Helmut Prechtl

Disciplinary Knowledge, Identity, and Navigation: The Contributions of Portfolio Construction
Jennifer Turns, Brook Sattler, Deborah Kilgore

Spatial and Temporal Embedding for Science Inquiry: An Empirical Study of Student Learning
Tom Moher, Jennifer Wiley, Allison Jaegar, Brenda Lopez Silva, Francesco Novellis, Deborah Kilb

Appropriating Conceptual Representations: A Case of Transfer in a Middle School Science Teacher
Suparna Sinha, Steven Gray, Cindy Hmelo-Silver, Rebecca Jordan, Sameer Honwad, Catherine Eberbach, Spencer Rugaber, Swaroop Vattam, Ashok Goel

Discipline-specific Socialization: A Comparative Study
Iris Tabak, Michael Weinstock, Hilla Zviling-Beiser

Fostering Mathematical Inquiry: Focus on Teacher's Interventions
Mara Martinez, Wenjuan Li

The Effectiveness of Reading Comprehension Strategies in High School Science Classrooms
Phillip Herman, Kristen Perkins, Martha Hansen, Louis Gomez, Kimberly Gomez

Making Knowledge Building Moves: Toward Cultivating Knowledge Building Communities in Classrooms
Katerine Bielaczyce, John Ow

Multiple Conceptual Coherences in the Speed Tutorial: Micro-processes of Local Stability
Brian Frank

Gaining an Insider Perspective on Learning physics in Hong Kong
Jan van Aalst
Using collaborative activity as a means to explore student performance and understanding
Marcela Borge, John M. Carroll

First-Year Engineering Students' Environmental Awareness and Conceptual Understanding with Participatory Game Design as Knowledge Elicitation
Melissa Dyehouse, Nicole Weber, Jun Fang, Constance Harris, Annette Tomory, Johannes Strobel

"I don't know - I'm just genius!": Distinguishing Between the Process and the Product of Student Algebraic Reasoning
Jose Gutierrez

Contingent Identification in a Biomedical Engineering Classroom
Vanessa Svihla

An Overview of CSCL Methodologies
Heisawon Jeong, Cindy Hmelo-Silver

A Visualization of Group Cognition: Semantic Network Analysis of A CSCL Community
Li Sha, Christopher Teplovs, Jan van Aalst

The Effects of Physical and Virtual Manipulatives on Students' Conceptual Learning About Pulleys
Elizabeth Gire, Adrian Carmichael, Jacquelyn J. Chini, Amy Routinfar, Sanjay Rebello, Garrett Smith, Sadhana Puntambekar

Children Learning Literate Practices in Spriting
Tara Rosenberger Shankar

Using Knowledge Space Theory to Analyze Concept Maps
Laura Cathcart, Mike Steff, Gili Marbach-Ad, Ann Smith, Kenneth Frauwirth

Analyzing Equality of Participation in Collaborative Inquiry: Toward a Knowledge Community
Hedieh Najafi, James D. Slotta

The Construction, Refinement, and Early Validation of the Equipartitioning Learning Trajectory
Alan Maloney, Jere Confrey

Finding Transactive Contributions in Whole Group Classroom Discussions
Hua Ai, Marietta Sionti, Yi-Chia Wang, Carolyn Rose

Magnetism as a Size Dependent Property: A Cognitive Sequence for Learning about Magnetism as an Introduction to Nanoscale Science for Middle and High School Students
David Sederberg, Lynn Bryan

From Show, To Room, To World: A Cross-Context Investigation of How Children Learn from Media Programming
Therese E. Dugan, Reed Stevens, Siri Mehas

Arts and Learning: A Review of the Impact of Arts and Aesthetics on Learning and Opportunities for Further Research
Kylie Peppler, Heidi Davis

Space And Time In Classroom Networks: Mapping Conceptual Domains In Mathematics Through Collective Activity Structures
Tobin White, Corey Brady

Sequential Effects of High and Low Guidance on Children's Early Science Learning
Bryan Matlen, David Klahr

Comparing Pedagogical Approaches for the Acquisition and Long-Term Robustness of the Control of Variables Strategy
Michael Sao Pedro, Janice Gobert, Juelaila Raziuddin
A critique of how learning progressions research conceptualizes sophistication and progress
Tiffany-Rose Sikorski, David Hammer

Dynamics of disciplinary understandings and practices of attending to student thinking in elementary teacher education
Janet Coffey, Ann Edwards, Carla Finkelstein

Software-Based Scaffolding: Supporting the Development of Knowledge Building Discourse in Online Courses
Nobuko Fujita, Christopher Teplovs

Seeing Algebraic Thinking in the Classroom: A Study of Teachers' Conceptualizations of Algebra
Janet Walkoe

Conceptual Change and Epistemic Growth Through Reflective Assessment in Computer-Supported Knowledge Building
Carol KK Chan, Ivan CK Lam

Talking with your mouth full: The role of a mediating tool in shaping collective positioning
Kate Anderson, Melissa Gresalfi

Fostering meaningful scientific argumentation practices through ongoing classroom interactions
Xiaowei Tang, Janet Coffey

Knowledge Transmission and Engineering Teaching
Sili Zhang, Monica Cardella

Listen to each other: How the building of norms in an elementary science classroom fosters participation and argumentation
Suna Ryu, William Sandoval

Interactional Arrangements for Learning about Science in Early Childhood: A Case Study Across Preschool and Home Contexts
Siri Mehus, Reed Stevens, Linda Grigholm

Promoting Learning in Complex Systems: Effect of Question Prompts versus System Dynamics Model Progressions as a Cognitive-Regulation Scaffold in a Simulation-Based Inquiry-Learning Environment
Deniz Eseryel, Victor Law

Made by Hand: Gestural Practices for the Building of Complex Concepts in Face-to-Face, One-on-One Learning Arrangements
Stephanie Scopelitis, Siri Mehus, Reed Stevens

Micros and Me: Leveraging home and community practices in formal science instruction
Carrie Tzou, Philip Bell

Playing with Food: Moving from Interests and Goals into Scientifically Meaningful Experiences
Tamara Clegg, Christina Gardner, Janet Kolodner

Science Learning as the Objectification of Discourse
Valerie Otero

Getting Others' Perspectives: A Case Study of Creative Writing Environments and Mentorship
Alecia Marie Magnifico

Cross-disciplinary practice in engineering contexts - a developmental phenomenographical perspective
Robin Adams, Tiago Forin, Saranya Srinivasan, Llewellyn Mann
Arts and Learning: A Review of the Impact of Arts and Aesthetics on Learning and Opportunities for Further Research

Kylie A. Peppler, Heidi J. Davis, Indiana University, 201 N Rose Avenue, Bloomington, IN, 47405
Email: kpeppler@indiana.edu, hdavis2@indiana.edu

Abstract: Traditionally, learning scientists have paid little attention to the discipline of the arts as the more prominent focus has been on science and mathematics. Despite this, the learning sciences could benefit from further understanding how the arts offer alternative methods of inquiry, representation, and understanding. At the same time, leaders in the field of arts education are calling for more research in areas that intersect with the learning sciences, pointing to the mutually synergistic ways that the two fields could inform one another. Guided by feminist communitarian methodology, this paper brings together a review of a wide body of research in the field of arts education, spanning affective, cognitive, social, and transformative effects of the arts. Insights are shared for how the arts as a discipline can inform the study of learning and, conversely, point to ways in which learning scientists can contribute to the field of arts education research.

The arts and aesthetic traditions have long since been a crucial part of the education experience. Scholars, such as John Dewey, have written extensively on the role of the arts in education (1934/1980), conceiving of the art object, the process of engaging in art making, and the resulting aesthetic sensory experience as theoretically independent entities. According to Dewey, the activity of art making is important because it engages learners in the process of building, designing, and constructing artifacts and provides a tool by which we search for meaning. Both of these notions lie at the heart of a great deal of learning sciences research. Despite this history, learning scientists have paid little attention to the discipline of the arts as the more prominent focus has been on science and mathematics. There are few art educators found in the learning sciences literatures and there are few scholars identified with the learning sciences community who deal with the arts in an explicit way. Despite this, there are many aspects of learning that could benefit from further research into how the arts and aesthetics play a role in our current conceptions, including the study of representations (Latour, 1987; Lynch, 1988), the design of new experiences, environments and technologies (Brown, 1992), and visual research methodologies (Pink, 2001), among many other areas of learning sciences research. One example that seems particularly ripe for exploration is the study of representations, particularly how children engage in drawing, dramatic re-enactments, and role-play when representing their ideas in simulations or models (c.f., Danish, 2009). Artistic and aesthetic facets are innate in all of this work, while their role in the learning process is seldom explored.

Historically, cognitive views of learning have prevailed in arts education (Deasy, 2002; Gardner, 1991) but more recently views have expanded to take on increasingly diverse theoretical frames and areas of study related to learning (Alexander & Day, 1992; Eisner, 2002). Taken together, these bodies of research have contributed to our understanding of the role of the arts in (1) the methods of data collection and analytical techniques (Barone, 2008; Sullivan, 2005); (2) the healing, therapeutic, and restorative processes (Eisner, 2002; Malchiodi, 1999; McNiff, 2004); (3) the discovery of the self, the group, the community or diverse cultures (Greene, 1995; Dewey, 1934/1980; Heath & Soep, 1998); and (4) in expression and communication as well as the particular habits of mind that are cultivated through the arts (Hetland et. al, 2007). More recent studies point to the long-term impacts of the arts on learning and development that outweigh other extracurricular activities (Catterall, 2009). These bodies of research are summarized more fully in this article but, taken together, represent a robust body of knowledge that is rarely built upon in learning sciences research. At the same time, leaders in the field of arts education are calling for more research on learning and artistic expression as well as more research on the arts and the transfer of learning (Arts Education Partnership, 2004). This points to the mutually synergistic ways that the two fields could inform one another. With this community bond in mind, we adopt the feminist communitarian model as our guiding methodological framework. This framework celebrates community ties and conceives understanding as inseparable from community (Friedman, 1989).

The focus of this paper is to turn our attention to the arts as an understudied area and examine how the field can expand as well as open new avenues of research in the learning sciences. This paper brings together a review of a wide body of research in the field of arts education, spanning affective, cognitive, social, and transformative effects of the arts. In addition, insights are shared for how the arts as a discipline can inform the study of learning in educational settings and, conversely, point to ways in which learning scientists can contribute to the field of arts education research.

History of Arts Education
The study of the arts in education has a long history arcing back to the Greek and Roman eras. Plato and Aristotle wrote of the importance of the arts, "for their didactic impact as instruments of cultural maintenance," (Efland, 1990, p. 8), alluding to the earliest function of the arts as visual public curricula to convey cultural values and encourage public discourse. In his influential book, A History of Art Education, Efland (1990) depicts the ways in which the social status of the artist contributed significantly to how art education has been conceptualized throughout time. For example, while art objects were seen as important for the education of Greek and Roman societies, the rich did not participate in art making, for artists were not deemed important in society. Conceptions changed in the Middle Ages, when learning in the arts became a form of religious penance for many monks, thus shifting the status of learning in the arts from low-status to highly esteemed. The next big shift occurred during the Renaissance, when academies were created to educate learners on the philosophy of art, which separated art making, traditionally done by lower status individuals, from theorizing about art, now part of the newly formed academies. As these two learning contexts developed, separate identities emerged: craft and fine art. No longer appropriate only for the working class and clergy, the concept of fine art brought high status to learning in the arts and opened the door to public art education.

In the United States, art education began with emphasis on drawing in Benjamin Franklin's academy in Philadelphia (1739/1931). The Industrial Revolution also encouraged drawing as a technical skill that should be included in the general education setting. Similarly, art at the university level began in other departments such as science and anthropology. For example, drawing was a subject taught in the School of Science at Yale long before the School of Fine Arts was established. At the turn of the twentieth-century, as fine art schools emerged across the country, technical skill and art history dominated learning in the arts. At the same time, Dewey's work on aesthetics entered the educational discourse, linking all learning to aesthetic experiences and aesthetic experiences to art in his seminal work, Art as Experience (1934/1980). As aesthetic awareness entered the stage of learning in the arts, somatic and intuitive understanding began to get the attention of much research. Research on the imagination and creative expression emerged from this pool of research, as well.

In more recent years, these discussions have been eclipsed in some of the current day educational policy imperatives that place central the role of science, math, and literacy in 21st century education. Often missing from these conversations is the enduring role that the arts and aesthetic knowing plays in education. Aesthetic awareness concerns the heightening of sensory perception (Greene, 1995), enabling learners to discern and demarcate something temporal as rare, unexpected, or beautiful. Arts researchers often point out that art-centered experiences are not automatically aesthetic in nature, but rather meaning is developed through the reflective and critical eye (Dewey, 1934; Freedman, 2003). Desantis and Housen (2000) developed a theory of aesthetic development that outlines patterns of thinking that correlate with the amount of art-centered experiences a learner has had. The theory presents a continuum in which lower levels of aesthetic connection align with fewer exposures to art. This work points to the importance of art education for aesthetic growth, which is of central importance to studies of arts learning, as well as in other domains.

Methodology

What follows is a brief review of the vast body of research that has taken place in the field of arts education. At its outset, four guiding questions framed our review and helped to organize our writing, consisting of: (1) What counts as learning in the arts? (2) How has learning been historically studied in the arts? (3) As an understudied area in the learning sciences, what implications do the arts hold for future research? By contrast, (4) how can the field of learning sciences expand the efforts of arts education?

Our intent for this review is to precipitate dialogue that bridges the educational discourse in two communities of research. In that regard, we selected a methodology anchored in communitarian epistemology apropos for building community ties and mutual interest. Our research methodology emanates from the feminist communitarian model, which puts forward that "the community is ontologically and axiologically prior to persons" (Christians, 2005, p. 152). This model provides three key foundations for this paper: where to look, what is important to look at, and how to use this information. First, this model provides a sociocultural lens, which suggests that meaning is mediated through social dialogue. From this perspective, we began the literature review by looking to key portals of dialogue in the arts community. As such, we bring together several landmark studies found in books and major journals published by leading arts education organizations, including the National Arts Education Association (NAEA) and the Arts Education Partnership (AEP).

Second, our methodological framework guided the process of selecting key themes for the paper. The feminist communitarian model holds that rules situated within a community are understood by valuing the multiplicity of voices as opposed to formal consensus. Within this framework, we looked to multiple voices in the social dialogue that provided themes that are unique to the arts. Taken together, this body of research can be summarized in four unique properties of arts learning that have broader implications for learning more generally, which are summarized in Table 1. In the following sections of the paper, we go into each of these four themes in further depth, highlighting some prior landmark studies as well as pointing to ways that the work can inform our understanding in the learning sciences.
Art as Inquiry

Arts-based researchers look to aesthetic response within the disciplines of art in order to develop meaning. Arts-based research is a methodology, which includes art making into any of the phases of research from inquiry and data collection to sharing findings and conclusions (Deasy, 2009). Poetry, narrative, film, drawing, collage, painting, performance, dance, music, and sculpture are a few of the mediums used in the creative research process. Arts-based research can be used to explore questions in any discipline, not just inquiries about art. Arts-based research critically investigates learning based on the belief that there are multiple ways to develop meaning. Here, we focus on arts-based research in education, though it exists in other disciplines, such as engineering (Penny, 2000), and anthropology (Pink, 2001).

Table 1: Summary of the current research organized into four key themes.

<table>
<thead>
<tr>
<th>Properties of Learning in the Arts</th>
<th>Definition</th>
<th>Implications for the Learning Sciences</th>
</tr>
</thead>
<tbody>
<tr>
<td>Art as Inquiry</td>
<td>The methods and mediums used by artists offer tools for art as a way of research.</td>
<td>Qualitative research methods.</td>
</tr>
<tr>
<td>Art as a Means of Discovery</td>
<td>The arts provide opportunities for multiple solutions, which allow individual differences to emerge and allow individuals to be reflexive about the self, the group, the community, and diverse cultures located across space and time.</td>
<td>Community Building. Collaboration. Cross-Cultural Awareness. Sociocultural Theory.</td>
</tr>
<tr>
<td>Art as Literacy</td>
<td>Engaging in the arts requires specific habits of mind and knowledge-in-action to be able to read and write the arts.</td>
<td>Habits of Mind. Literacy. Critique. Representations. Transfer.</td>
</tr>
</tbody>
</table>

There are many definitions and labels for inquiring about the world through artistic practice. Most descriptions include the notion of viewing education through the artistic lens. But that means slightly different things to different researchers. Sullivan (2005) summarizes four ways that education research has been interpreted through the arts: 1) educational connoisseurship, 2) Arts-based Educational Research, 3) arts-informed research, and 4) a/r/tography. A fifth group is added to Sullivan's list by including the scholARTists mentioned in Cahnmann-Taylor and Siegesmund's collection of arts based research (2008).

Sullivan's first group, Eisner's educational connoisseurship, is based on *seeing* and *sensing* educational phenomenon through the expertise of an *educational critic*, modeled upon the concept of the expertise of an art critic, who makes judgments based on having exposure to many images Similarly the educational critic makes judgments based on exposure to many educational experiences. Eisner continued to push the idea of art practice informing research by creating the Arts-Based Research Institute in 1993. In 1997, with his colleague Barone, the concept and the term, Art-based Educational Research (ABER), emerged. ABER points to the unique insights and ways of expressing that can be found only in the arts.

While ABER celebrates the distinctly different approaches available through the arts, other researchers maintain the traditional research framework for using the arts in research. For example, arts-informed research seeks to integrate scientific inquiry with artful and imaginative inquiry (Cole & Knowles, 2001). From this view, the arts are relied upon to represent understanding developed through more traditional research methods. To distinguish between ABER and arts-informed research, the results of an arts-informed study might be generalizable, while ABER would not seek generalizability, but instead value aesthetic resonance --that is, the research is recognized as holding meaning for a specific community (Eisner, 2008). Other researchers refer to themselves as a/r/tographers, who inquire about the world within the identity of being an artist who is also a researcher and a teacher. A/r/tographers approach research through living inquiry embodied within the daily roles of an artist-researcher-teacher. As such, a/r/tographers use multiple artforms and writings to build understanding by knowing, doing, and making (Irwin, 2004). In addition to these four interpretations of art as inquiry depicted by Sullivan, another key group includes ScholARTists, practicing artists who create stand-alone artwork developed from their research. Their artwork develops from fieldwork, such as collected and analyzed data, but the final piece is relayed through art. For example, Saldana (2008) created an ethnodrama about the nature of qualitative data based on field notes and 25 years worth of experience in the theater. ScholARTists use art practices for scholarships' sake (Irwin & de Cosson, 2004). For example,
Springgay's (2004) dissertation research on tactile epistemologies employs the methods of a/r/tography to examine student perceptions of thinking through the body. The paper version of the dissertation is accompanied by a DVD of seven videos. Aligning with the tactile epistemological content of the work, the paper version is hand stitched with fabrics and thread, and is augmented by the author's original photography and poetry.

Ultimately, research is a tool for making sense of learning in order to positively impact the lives of learners. Human understanding advances through exploration, interpretation, and representation, which are qualities of both the arts and sciences (Leavy, 2009). Arts-based research is beneficial for the learning sciences in myriad ways, but we have highlighted three of the most significant: 1) to provide the learning sciences with an expanded toolkit for developing meaning, 2) to acknowledge and clarify assumptions about what it means to know for the researcher, and 3) to include voices previously left out of the discourse on learning. In addition to the benefits of embracing aesthetic awareness as a useful component of research, arts based research also challenges other traditional notions. Embracing post-modern theories that state there is no one truth, arts-based research encourages research that opens the conversation—it is not the researcher telling the reader, but rather the researcher invites the reader to be an active part of the process in making meaning (Siegesmund & Cahnmann-Taylor, 2008). Barone also sees the wider readership potentially available through arts-based research as an opportunity to encourage social change (2008).

Art as Transformative Experience

Throughout history, humanity has responded to tragedy with art, as represented by the 9/11 memorial, Reflecting Absence or Picasso's Guernica, among countless others. Just as a nation uses art to heal and move forward, art as a transformative experience is important for education, as well. As Maslow's hierarchy of needs suggests, basic needs such as feeling safe and valued must be met before learning can occur (1943). The transformative nature of learning in the arts is well poised to meet this educative need.

Long acknowledged in the fields of art, psychology, and aesthetic education, the process of creating and responding to art offers therapeutic and restorative properties (e.g., Eisner, 2002). The transformative impact of art can be seen in studies like Malchofield's (1999) work with children, which found stress relief and healing effects when art-making was used with hospitalized children. Kaplan et al. (1993) found that visits to a museum had a restorative effect on visitors. A number of self-proclaimed transformative art experiences exist in the literature, as well. For example, Hill (1951) professes that art making was instrumental in his recovery from tuberculosis and Allen (1995) shares how art helped her confront harmful beliefs and transformed her life.

The transformative impact of art provides insight for research in the areas of affective knowledge, restorative experiences, and self-efficacy. Art therapy is a branch of psychology that has greatly contributed to this range of research. Art therapy research has shown that healing and transformation comes from a place of affect that is beyond words (Malchofieldi, 1999). Research has also shown that the affective benefits of learning in the arts act as a gatekeeper for positive self-identity in adolescents (Catterall, 2004). Similarly, in Critical Links, several research projects found that the affective properties of the arts contributed to positive transformations in the areas of motivation, cognitive development, school culture, academic performance, and attitudes toward reading (Catterall, 2002). Self-efficacy is also strengthened through experiences with art (Catterall, 2004; Catterall & Peppler, 2007). Eisner summarizes that self-efficacy is developed during the creative act as learners engage in a medium and bring their concepts into reality (2002). Kennedy's (2002) study found that learning in the arts increased the self-efficacy of at-risk youth, promoting positive self-esteem. In this way, experiences with art enhance individual, social, and cultural health. By reading the psychological state, learning in the arts reaches across disciplines and offers unique opportunities to restore health, which clears pathways to new knowledge.

Arts as a Means of Discovery

Another key contribution of the arts is that it provides opportunities for multiple solutions. As Eisner states, “...Standardization of solution and uniformity of response is no virtue in the arts. While the teacher of spelling is not particularly interested in promoting the student’s ingenuity, the art teacher seeks it” (2002, p. 1). The diversity of solutions and the space that is afforded for creative solutions to a problem is at the heart of what it means to engage in learning in the arts. We see the valuing of multiple solutions as essential to allowing individual differences to emerge and engender a discovery learning process that engages the learner in learning about the self, the group, the community, and diverse cultures, which are outlined in the four sections below.

Arts and Learning about the Self. While self-discovery may happen in all disciplines, the arts seem to be a particularly fruitful context to cultivate solutions unique to the self, imagination, and creativity. Further discovering these areas in terms of their relationship to learning seems ripe for exploration into the role of creativity and imagination in learning and seems to also be an understudied area of the learning sciences. Imagination seems to play a role in self-discovery. Greene's seminal work, Releasing the Imagination, stresses that when a young person's imagination is not released, that young person may have difficulty situating the self as well as the role of the self in a larger community (1995). Heath and Soep expand on this to elaborate that the
arts allows individuals to be reflexive about the self as they hone the ability to make things of value to their surrounding communities (Heath & Soep, 1998). Similarly, Dewey alerts us to the transformative nature of the arts and aesthetics in challenging the status quo and the dominant elite in order to meet the needs of democratic society (1934/1980). This is particularly relevant to youth in marginalized communities because they have an opportunity to write their own narratives and insert themselves into the dominant discourse through the arts. This potentially sets the stage for higher levels of engagement in other arenas, like school. Catterall and Peppler also discuss the impact that the arts have on general self-efficacy in disadvantaged groups—the positive and authentic view of one’s capabilities and achievements—developed in mastering an art form, and the critical and reflective dispositions that accompany its development (2007). Taken together, these strands of research call for future investigations into the differing effects of an arts experience for the audience and the artist, which are areas of inquiry that learning scientists are particularly poised to answer.

The Arts and Group Learning. As aforementioned, when young people engage in art making they explore a variety of disciplines and are learning at multiple levels, including learning about the larger group or classroom community as well as their place in it. Arts experiences frequently involve more than one learner. The performing arts, in particular, are steeped in this tradition as actors find their place in the production, musicians learn about their part in the orchestral work, visual artists work on large murals together, and dancers in their role in the dance. While the arts are not the only discipline to have group learning experiences, they offer rich opportunities to gain skills in a group setting and also to display final products. Research on collaboration would benefit from exploring the arts further to better understand the role of the collective in the arts. Researchers might also inquire into the specific qualities the arts bring to group learning processes as well as the qualities of the individual art forms that contribute to efficacious group learning and contrast this with what is known more generally about group learning and collaboration. Other areas that are ripe for exploration include investigating whether arts collaborations exhibit general tendencies to enhance equity in learning for larger numbers of learners in the group and particularly whether this is inclusive of already disenfranchised groups. Preliminary observations indicate that the arts can create more equitable learning opportunities for at-risk youth (Catterall & Peppler, 2007). Additionally, it would be interesting to explore whether the arts can serve as a training ground for learning to be part of a group outside of the arts and the conditions for such group learning to occur.

In a related manner, current and historical research points to the arts as the foundations of a democratic society, including effects of the arts on positive social interactions, tolerance, and consideration to moral dilemmas. For instance, studies suggest that the arts promote empathy, tolerance, and solution finding through taking multiple perspectives (Catterall, 2002). These effects may not just extend to students involved in the arts, they may well impact participating teachers and school identity. For example, Noblit and Corbett (2001), noted in their evaluation of the A+ Schools program in North Carolina that school faculty developed a positive school culture despite typical administrative challenges and lack of resources. This work suggests that engagement in arts activities fosters democratic values. Further inquiry may advance notions of democratic public schooling.

The Arts and Cross-Cultural Learning. Because artifacts are a reflection of the values held by a group of people in a particular space and time, they allow us to learn about diverse cultures through their study. This type of learning happens even when we travel across space and time. Anthropologists and historians, for example, help us to understand diverse cultures through the study of their art, which is the foundation of fields like art history and music history. Moreover, the arts are rooted in cultural traditions. Engaging youth to identify more deeply with their own culture and share this understanding with others may also be a key contribution of the arts, especially as classrooms encourage this type of sharing with peers and teaching faculty. Moreover, youth from diverse backgrounds can develop deeper understandings around issues of race, culture, and class systems (Deasy, 2002). Drama, for example, has been found to engage youth in social change and build understanding among diverse groups (Rohd, 1998). This may be because drama allows youth to explore multiple roles and perspectives through role-play (Deasy, 2002). In doing so, drama helps youth to understand character motivation, complex problems and emotions, and social relationships, promotes conflict resolution, engagement, and positive self-concept (Catterall, 2002). This ongoing body of research demonstrates the efficacy of the arts of communicating meaning across cultures through complex semiotic systems.

Arts as Literacy
Literacy is now known to be both multimodal in nature (Kress & van Leeuwen, 1996) and mediated through shared social and culturally situated activity (Vygotsky, 1935/1978). As theories of semiotics are advanced, prior work has focused on monomodal domains of the various art forms and articulated the associated grammars of each individual system of communication (i.e., visual, auditory, etc.). More recently, researchers are promoting a multimodal view of literacy that is key to understanding newer art forms (Kress & van Leeuwen, 2001). These efforts broaden our conceptions to include a theory of “multimodal literacy” and what it might mean to “make meaning” across a range of modalities. Jewitt and Kress (2003) argue for two central practices in their theory of multimodal literacy, including “design thinking” as encapsulating the intentions of a designer in absenta of the materials and the “production thinking” emanating from those ideas in the materials. In sum,
artists make sense of individual modalities with the ultimate goal of making connections between several different types of modalities. Arts engagement fosters the ability to translate one type of literacy to another.

Further, current research on language and literacy point to the ways in which various modes of communication have value in the larger social and cultural context. For example, each of the major art forms (e.g., dance, drama, music, and visual arts) can be seen as its own symbolic system of language, one capable of expressing a range of emotionality and communicating a rich set of ideas and understandings that is oftentimes unattainable through speech alone. Not surprisingly, this realization allows us to view the meaning making of disenfranchised groups in new ways (Baum, Owen, & Oreck, 1997; Catterall & Waldorf, 2000), which is especially true for young children and those with disabilities that were previously seen as illiterate or pre-literate. Young children’s drawings, for example, can now be seen as efforts at meaning making and expression and can be used for thinking and reflection (Kress & van Leeuwen, 1996). Through seeing these acts as art in their own right (Gardner, 1980), we begin to recognize these acts as literate activities and can begin to understand how young children as well as all learners begin to read and write the world through artistic acts.

Moreover, artists shape and convey intellectual and emotional content in their artwork as well as to evoke intellectual and emotional responses in the viewer (Greene, 2001). As such, we begin to see that learning in the arts transcends the benefits for the artists and includes the audience in the learning process as well. This is because the art object presents opportunities for the audience to engage in learning. The arts naturally afford inclusive learning opportunities because arts tradition is deeply rooted in performance, which is a natural culmination of dance, drama, and music. Also, displaying the final product in the visual arts is a common culmination, which positions the audience as a primary motivating force in the arts (Sefton-Green, 1998).

As theories of constructionism would explain (Papert, 1980; Kafai, 2006), the process of producing a work of art engages the artist in an iterative exploration of ideas and emotions as the work proceeds in a meta-cognitive manner. During this process, the artist learns to refine aesthetic sensibilities and build knowledge about materials, while connecting to other disciplines. For example, figurative drawing engages an artist in further understanding human anatomy. The fact that the arts give use new ways to read and write the world, has spurred a flurry of research aimed at the arts and the transfer of learning to other traditional academic areas such as mathematics, spatial reasoning, and oral and written language acquisition (Winner & Hetland, 2000; Deasy, 2002). Studies and commentaries in the publication, Critical Links (Deasy, 2002), have accumulated support that the arts and oral and written language share interrelated physical and symbolic processes, an area of research that could be further explored in the learning and cognitive sciences.

Relationships between the arts and literacy and language development are found across all of the visual and performing art forms, though the research is currently most robust in music and drama. For example, music features a symbol system that shares fundamental characteristics with language. At its core, music can be seen as decoding and encoding procedures that have syntactic and expressive structures (Scripp, 2002). In a similar manner, Catterall found that dramatic enactments enhance youths’ abilities to comprehend texts, identify characters, and understand character motivations (2002). Studies also indicate that dramatic activities promote both writing proficiency and proximity in generating written material. Further research is needed into other artistic forms, particular dance and the visual arts, as very little current research exists in this area. Additionally, learning scientists could help to unpack the mechanisms at work in the connections between the arts and literacy. For example, math educators call for more research on learning and aesthetics in order to develop a mathematics aesthetic, which evokes awareness of the beauty in mathematical ideas (e.g., Sinclair & Crespo, 2006). Across these studies, we see that the arts set the stage for learning a unique language and communicating with others in the world at large. Further inquiry into theorizing such literacies is needed, with the learning sciences uniquely poised to contribute knowledge on design-based research, assessment, and situated learning.

Discussion & Conclusion

We have pointed to ways the field of arts education could benefit from research in the learning sciences as well as the ways in which the arts alert us to an understanding that is under-represented in the learning sciences. There are a range of cognitive, social, and cultural capacities engaged by learning in the arts. The following summarizes five opportunities for future research. First, research is needed to examine how youth develop such knowledge-in-action as well as the disposition to see the world through the lens of aesthetics, as we unravel how youth wrestle with ideas, materials, and meanings in the arts (Fiske, 2000). Second, there is a need to better understand how the various art forms uniquely impact the learning experience. For example, in what ways is learning in music distinct from other ways of representing ideas, such as dance or visual arts? Deasy adds that “finding alignment among the ways in which the study of different artistic forms demands and nurtures complex thinking has significance for the development of comprehensive arts programs and for our understanding of the nature of thought in arts learning” (2002, p. 6). Third, further research is needed on the design of learning environments in the arts. Better understanding of the pedagogical approaches and classroom contexts that support learning in the arts is needed (Horowitz & Webb-Dempsey, 2002). Fourth, there is also a need to define and measure “arts learning” (Catterall, 2002). Current studies do not unpack the extent and
quality of the learning experience in the arts. Consequently, we know little about the specific qualities of arts learning that contribute to the gains aforementioned in this paper. As a result, it is difficult to qualitatively compare arts programs and there is an assumption that all arts education is of similar quality. This does not contribute to our understanding of how variations in learning in the arts account for variations in learning outcomes. Lastly, further research is needed in traditional areas of the learning sciences to explore the role of arts and aesthetics in our understanding of design, representations, and research methodologies, among a host of other domains in the learning sciences.

References

VOLUME 1 AUTHOR INDEX

A
Abrahamson, Dor, University of California, Berkeley, 492
Adams, Robin, Purdue University, 1158
Ai, Hua, Carnegie Mellon University, 976
Aleven, Vincent, Carnegie Mellon University, 1
Alonso, Alicia C., Michigan State University, 588
Anderson, Kate, National Institute of Education Singapore, 1071
Apedoe, Xornam S., University of San Francisco, 596

B
Bagley, Elizabeth, University of Wisconsin-Madison, 81
Bates, Lauren, Education Development Center, 238
Bauhoff, Vera, Knowledge Media Research Center, 174
Becu-Robinault, Karine, Interactions Corpora Learning Representations, 404
Bell, Philip, University of Washington, 1127
Berland, Leema, University of Texas, Austin, 428
Berson, Eric, University of California Berkeley, 396
Betancourt, Mireille, University of Geneva, 683
Bielaczyc, Katerine, Singapore Learning Sciences Lab, 865
Blair, Kristen Pilner, Stanford University, 380
Bolger, Molly, Vanderbilt University, 706
Booker, Angela, University of California Davis, 380
Bopardikar, Anushree, University of Wisconsin-Madison, 698
Borge, Marcela, Pennsylvania State University, 889
Boticki, Ivica, Nanyang Technological University Singapore, 500
Brady, Corey, University of Virginia, 1008
Braun, Isabel, University of Freiburg Germany, 714
Bromme, Rainer, University of Muenster, 636
Brown, Patrick, Washington University in St. Louis, 773
Bryan, Lynn, Purdue University, 984

C
Cakir, Murat, Drexel University, 325
Calabrese Barton, Angela, Michigan State University, 722
Cardella, Monica, Purdue University, 1087
Carmichael, Adrian, Kansas State University, 937
Carr, Margaret, University of Waikato, 215
Carroll, John M., Pennsylvania State University, 889
Cathcart, Laura, University of Maryland, 952
Chai, Ching Sing, Nanyang Technological University Singapore, 113
Chan, Carol KK, University of Hong Kong, 1063
Chan, Wen-Ching, National Central University Taiwan, 113
Chang, Hsin-Yi, National Kaohsiung Normal University, 137
Chang, Yu-Han, National Central University Taiwan, 121
Chase, Catherine C., Stanford University, 153
Chen, Fei-Ching, National Central University Taiwan, 113
Chen, Gaowei, The Hong Kong Institute of Education, 357
Chen, Wenli, National Institute of Education Singapore, 436, 484
Chin, Chee-Kuen, Singapore Centre for Chinese Language (SCCL), 349
Chini, Jacquelyn J., Kansas State University, 937
Chiu, Ming Ming, State University of New York (SUNY), 207, 357
Chung, Chen-Wei, National Central University Taiwan, 182
Clark, Dav, Department of Psychology, University of California, Berkeley, 460
Claudia, Sauter, University of Tuebingen, 105
Clegg, Tamara, Georgia Institute of Technology, 1135
Close, Hunter G., Seattle Pacific University, 388
Coffey, Janet, University of Maryland, 1040, 1079
Compton-Lilly, Catherine, University of Wisconsin-Madison, 222
Confrey, Jere, North Carolina State University, 968
Conlin, Luke, University of Maryland, College Park, 277
Cordero Maskiewicz, April, Point Loma Nazarene University, 293
Cowie, Bronwen, University of Waikato, 215
Cress, Ulrike, Knowledge Media Research Center, 9, 105

D

Danish, Joshua, Indiana University, 420
Davis, Heidi, Indiana University, 1000
De Wever, Bram, Ghent University, 736
Derry, Sharon, University of Wisconsin, 667
Dianovskiy, Michael, University of Illinois at Chicago, 802
Dixon, Bonnie, University of Maryland, College Park, 765
Dodick, Jeff, Science teaching Center, The Hebrew University of Jerusalem, 89
Drake, Corey, Iowa State University, 722
Dugan, Therese E., University of Washington, 992
Duncan, Ravit Golan, Rutgers University, 190, 199, 532
Dunn, Margie, Rutgers University, 333
Dyehouse, Melissa, Purdue University, 897
Eagan, Brendan R., University of Wisconsin-Madison, 667
Eberbach, Catherine, Rutgers University, 834
Edwards, Ann, University of Maryland, 1040
Empson, Susan, University of Texas Austin, 333
Engle, Randi, University of California, Berkeley, 612
Engler, Jan, University of Duisburg-Essen, 750
Erkens, Gijsbert, Utrecht University, 476, 675
Eseryel, Deniz, University of Oklahoma, 1111
Esmonde, Indigo, University of Toronto, 380
Fang, Jun, Purdue University, 897
Fantini, Paola, Liceo Scientifico A. Einstein Rimini Italy, 572
Festner, Dagmar, f-bb Research Institute for Vocational Education and Training, Nuremberg, 452
Finkelstein, Carla, University of Maryland, 1040
Fischer, Frank, University of Munich, 794, 810
Fischer, Ursula, Knowledge Media Research Center, 105
Florax, Mareike, University of Education, Freiburg, Germany, 17
Forbes, Cory, University of Iowa, 651
Forin, Tiago, Purdue University, 1158
Forte, Andrea, Drexel University, 428
Frank, Brian, University of Maine, 873
Frauwirth, Kenneth, University of Maryland, 952
Frey, Regina, Washington University in St. Louis, 773
Fristoe, Teale, University of California, Santa Cruz, 166
Fujita, Nobuko, OISE University of Toronto, 1048
Furtak, Erin Marie, University of Colorado Boulder, 129
Gagliardi, Marta, Department of Physics - University of Bologna, Italy, 572
Gallagher, Lawrence P., SRI International, 238
Gardner, Christina, Georgia Institute of Technology, 1135
Gavota, Monica, University of Geneva, 683
Gealy, Daniel, Washington University in St. Louis, 773
Gegenfurtner, Andreas, Centre for Learning Research, University of Turku, Finland, 452, 508, 524
Gerhards, Gisela M., University of Frankfurt, 516
Giesbers, Bas, Maastricht University, School of Business and Economics, 25
Gijselaers, Wim, Maastricht University, School of Business and Economics, 25
Gire, Elizabeth, Kansas State University, 937
Gnesdilow, Dana, University of Wisconsin-Madison, 698
Gobert, Janice, Worcester Polytechnic Institute, 1024
Goel, Ashok, Georgia Institute of Technology, 834
Goldberg, Fred, San Diego State University, 145
Goldman, Shelley, Stanford University, 380
Gomez, Kimberley, University of Pittsburgh, 857
Gomez, Louis, University of Pittsburgh, 556, 857
Gong, Cheng, Singapore Centre for Chinese Language (SCCL), 349
Gray, Steven, Rutgers University, 834
Gresalfi, Melissa, Indiana University, 1071
Gressick, Julia, University of Wisconsin-Madison, 667
Grigholm, Linda, University of Washington, 1103
Gruber, Hans, Department of Educational Sciences, University of Regensburg, 452
Gupta, Ayush, University of Maryland, College Park, 277
Gutierrez, Jose, University of California at Berkeley, 905
Gvili, Inbal Flash, Science Teaching Center, The Hebrew University of Jerusalem, 89

H
Hackbarth, Alan J., University of Wisconsin-Madison, 667
Hadjichambis, Andreas, Cyprus Ministry of Education and Culture, 246
Halverson, Erica Rosenfeld, University of Wisconsin-Madison, 412
Hammer, David, University of Maryland, College Park, 277, 1032
Hammer, Ronen, Holon Institute of Technology, HIT, 65
Hans-Christoph, Nuerk, University of Tuebingen, 105
Hansen, Martha, Evanston Township High School, 857
Harris, Christopher J., SRI International, 261
Harris, Constance, Purdue University, 897
Hatfield, David, University of Wisconsin-Madison, 628
Heckler, Andrew, Ohio State University, 365
Held, Christoph, Knowledge Media Research Center, 9
Henson, Kathleen, University of Colorado Boulder, 129
Herman, Phillip, University of Pittsburgh, 857
Hesse, Friedrich W., Knowledge Media Research Center, Tuebingen, Germany, 620
Hmelo-Silver, Cindy, Rutgers University, 834, 921
Hong, Huang-Yao, National Central University Taiwan, 113, 121
Honwad, Sameer, Rutgers University, 834
Hoppe, Ulrich, University of Duisburg-Essen, 750
Huff, Markus, *Knowledge Media Research Center*, 174
Hupert, Naomi, *Education Development Center*, 238

J
Jaegar, Allison, *University of Illinois at Chicago*, 826
Jeong, Allan, *Florida State University*, 73
Jeong, Heisawn, *Hallym University*, 921
Jimenez, Osvaldo, *Stanford University*, 380
Jordan, Rebecca, *Rutgers University*, 834
Jucks, Regina, *University of Muenster*, 516

K
Kafouris, Dimitris, *Cyprus Ministry of Education and Culture*, 246
Kali, Yael, *Technion - Israel Institute of Technology*, 468
Kara, Melike, *Illinois State University*, 730
Kidwai, Khusro, *Pennsylvania State University*, 778
Kilb, Deborah, *Scripps Institution of Oceanography*, 826
Kilgore, Deborah, *University of Washington*, 818
Kimmerle, Joachim, *University of Tuebingen*, 9
King, Elizabeth, *University of Wisconsin-Madison*, 222
Kirschner, Paul, *Open University of the Netherlands*, 230, 476, 675
Klahr, David, *Carnegie Mellon University*, 1016
Kobiela, Marta, *Vanderbilt University*, 706
Koedinger, Kenneth, *Carnegie Mellon University*, 57
Kohen-Vacs, Dan, *Holon Institute of Technology, HIT*, 65
Kollar, Ingo, *University of Munich*, 810
Kolodner, Janet, *Georgia Institute of Technology*, 1135
Korbinian, Moeller, *University of Tuebingen*, 105
Krajcik, Joseph, *University of Michigan*, 580
Krakowski, Moshe, *Yeshiva University*, 556
Krauskopf, Karsten, *Knowledge Media Research Center, Tuebingen, Germany*, 620
Kuo, Wang-Hsin, *National Central University Taiwan*, 182
Kyza, Eleni, *Cyprus University of Technology*, 246

L
Lam, IvanCK, *University of Hong Kong*, 1063
Langer-Osuna, Jennifer, *University of Miami*, 612
Lara-Meloy, Teresa, *SRI International*, 285
Law, Nancy, *University of Hong Kong*, 207
Law, Victor, *University of Oklahoma*, 1111
<table>
<thead>
<tr>
<th>Name</th>
<th>Institution</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lehrer, Rich</td>
<td>Vanderbilt University</td>
<td>706</td>
</tr>
<tr>
<td>Levin, Daniel</td>
<td>American University</td>
<td>41</td>
</tr>
<tr>
<td>Levine, Susan</td>
<td>University of Chicago</td>
<td>556</td>
</tr>
<tr>
<td>Levrini, Olivia</td>
<td>Department of Physics - University of Bologna, Italy</td>
<td>572</td>
</tr>
<tr>
<td>Lewis, Katherine</td>
<td>University of California, Berkeley</td>
<td>742</td>
</tr>
<tr>
<td>Li, Wenjuan</td>
<td>University of Illinois at Chicago</td>
<td>849</td>
</tr>
<tr>
<td>Lineback, Jennifer</td>
<td>San Diego State University</td>
<td>145</td>
</tr>
<tr>
<td>Linn, Marcia</td>
<td>University of California Berkeley</td>
<td>786</td>
</tr>
<tr>
<td>Liu, Chen-Chung</td>
<td>National Central University Taiwan</td>
<td>182</td>
</tr>
<tr>
<td>Liu, Lei</td>
<td>University of Pennsylvania</td>
<td>690</td>
</tr>
<tr>
<td>Liu, May</td>
<td>Singapore Centre for Chinese Language (SCCL)</td>
<td>349</td>
</tr>
<tr>
<td>Liu, Ou Lydia</td>
<td>Educational Testing Service</td>
<td>137</td>
</tr>
<tr>
<td>Llorente, Carlin</td>
<td>SRI International</td>
<td>238</td>
</tr>
<tr>
<td>Looi, Chee-Kit</td>
<td>National Institute of Education Singapore</td>
<td>436</td>
</tr>
<tr>
<td>Lopez Silva, Brenda</td>
<td>University of Illinois at Chicago</td>
<td>826</td>
</tr>
<tr>
<td>Louca, Loucas T.</td>
<td>European University-Cyprus</td>
<td>33</td>
</tr>
<tr>
<td>Lu, Jingyan</td>
<td>The University of Hong Kong</td>
<td>207</td>
</tr>
<tr>
<td>Luesse, Sarah</td>
<td>Washington University in St. Louis</td>
<td>773</td>
</tr>
<tr>
<td>Lund, Kristine</td>
<td>University of Lyon</td>
<td>404</td>
</tr>
<tr>
<td>Ly, Uyen</td>
<td>University of California Berkeley</td>
<td>396</td>
</tr>
<tr>
<td>Macalalag Jr, Augusto</td>
<td>Rutgers University</td>
<td>199</td>
</tr>
<tr>
<td>Madeira, Cheryl</td>
<td>University of Toronto</td>
<td>651</td>
</tr>
<tr>
<td>Magner, Ulrike</td>
<td>University of Freiburg Germany</td>
<td>1</td>
</tr>
<tr>
<td>Magnifico, Alecia Marie</td>
<td>University of Wisconsin-Madison</td>
<td>1151</td>
</tr>
<tr>
<td>Maloney, Alan</td>
<td>North Carolina State University</td>
<td>968</td>
</tr>
<tr>
<td>Maney, Rebecca</td>
<td>University of Glasgow</td>
<td>317</td>
</tr>
<tr>
<td>Mann, Llewellyn</td>
<td>Swinburne University</td>
<td>1158</td>
</tr>
<tr>
<td>Marbach-Ad, Gili</td>
<td>University of Maryland</td>
<td>952</td>
</tr>
<tr>
<td>Martin, Lee</td>
<td>University of California, Davis</td>
<td>380</td>
</tr>
<tr>
<td>Martinez, Mara</td>
<td>University of Illinois at Chicago</td>
<td>849</td>
</tr>
<tr>
<td>Matlen, Bryan</td>
<td>Carnegie Mellon University</td>
<td>1016</td>
</tr>
<tr>
<td>Mattis, Kristina V.</td>
<td>University of San Francisco</td>
<td>596</td>
</tr>
<tr>
<td>McChesney, Jane</td>
<td>University of Canterbury</td>
<td>215</td>
</tr>
<tr>
<td>McElhaney, Kevin</td>
<td>University of California Berkeley</td>
<td>786</td>
</tr>
<tr>
<td>Mehus, Siri</td>
<td>University of Washington</td>
<td>992</td>
</tr>
<tr>
<td>Messina, Richard</td>
<td>Institute of Child Study, University of Toronto</td>
<td>49</td>
</tr>
<tr>
<td>Metz, Kathleen</td>
<td>University of California Berkeley</td>
<td>396</td>
</tr>
</tbody>
</table>
Miles-Kingston, Robert, *Greerton Early Childhood Centre*, 215
Mitamura, Teruko, *Language Technologies Institute, Carnegie Mellon University*, 57
Moher, Tom, *University of Illinois at Chicago*, 826
Morrison, Deborah, *University of Colorado Boulder*, 129
Moschkovich, Judit, *University of California Santa Cruz*, 285
Moskaliuk, Johannes, *University of Tuebingen*, 9

N
Najafi, Hedieh, *OISE, University of Toronto*, 960
Nash, Padraig, *University of Wisconsin-Madison*, 269
Nicolaoud, Iolie, *Cyprus University of Technology*, 246
Novellis, Francesco, *University of Illinois at Chicago*, 826
Nückles, Matthias, *University of Freiburg Germany*, 564, 714

O
Otero, Valerie, *University of Colorado Boulder*, 1143
Ow, John, *Innova Primary School*, 865

P
Parnafes, Orit, *Tel-Aviv University*, 301, 309
Pasnik, Shelley, *Education Development Center*, 238
Paus, Elisabeth, *University of Muenster*, 516
Pea, Roy, *Stanford University*, 380, 620
Pecori, Barbara, *Department of Physics - University of Bologna, Italy*, 572
Penuel, William R., *SRI International*, 238, 261
Peppler, Kylie, *Indiana University*, 1000
Perkins, Kristen, *Northwestern University*, 857
Peters, Vanessa, *University of Toronto*, 548
Phelps, David, *Indiana University*, 420
Phielix, Chris, *Utrecht University, The Netherlands*, 230
Philippi, Susanne, *University of Freiburg Germany*, 714
Phillips, Rachel S., *University of Washington*, 261
Pierson, Jessica, *San Diego State University*, 333
Pilitsis, Vicky, *Rutgers University*, 190
Ploetzner, Rolf, *University of Education, Freiburg, Germany*, 17
Popescu, Octav, *Carnegie Mellon University*, 1
Porsch, Torsten, *University of Muenster*, 636
Poyas, Yael, *Oranim- College of Education*, 97
Prechtl, Helmut, *Leibniz-Institut für die Pädagogik der Naturwissenschaften und Mathematik*, 810
Prins, Frans, *Utrecht University, The Netherlands*, 230
Puntambekar, Sadhana, *University of Wisconsin*, 698, 937

Raes, Annelies, *Ghent University*, 736

Ranney, Michael, *University of California Berkeley*, 460

Ratliff, Kristin, *University of Chicago*, 556

Raziuddin, Juelaila, *Worcester Polytechnic Institute*, 1024

Rebello, Sanjay, *Kansas State University*, 937

Renkl, Alexander, *University of Freiburg Germany*, 1

Richards, Jennifer, *University of Maryland, College Park*, 41

Rienties, Bart, *Maastricht University, School of Business and Economics*, 25

Roberts, Sarah A., *University of Colorado Boulder*, 129

Ronen, Miky, *Holon Institute of Technology, HIT*, 65

Ronen-Fuhrmann, Tamar, *Holon Institute of Technology*, 468

Roschelle, Jeremy, *SRI International*, 333, 444

Rose, Carolyn, *Carnegie Mellon University*, 976

Rouinfar, Amy, *Kansas State University*, 937

Rowden-Quince, Bianca, *University of San Francisco*, 596

Rugaber, Spencer, *Georgia Institute of Technology*, 834

Ryu, Minjung, *University of Maryland, College Park*, 765

Ryu, Suna, *University of California Los Angeles*, 1095

Sandoval, William, *University of California Los Angeles*, 1095

Sands, Lorraine, *Greerton Early Childhood Centre*, 215

Santis, Maria, *European University-Cyprus*, 604

Sao Pedro, Michael, *Worcester Polytechnic Institute*, 1024

Sattler, Brook, *University of Washington*, 818

Sawyer, R. Keith, *Washington University*, 773

Scarongella, Mariateresa, *Department of Physics - University of Bologna. Italy*, 572

Schellens, Tammy, *Ghent University*, 736

Scherr, Rachel E., *Seattle Pacific University*, 388

Schlichter, Natalia, *University of Goettingen*, 564

Schneider, Daniel, *University of Geneva*, 683

Schunn, Christian D., *University of Pittsburgh*, 596

Schwan, Stephan, *Knowledge Media Research Center*, 174

Schwartz, Daniel L., *Stanford University*, 153

Schwonke, Rolf, *University of Freiburg Germany*, 1

Scopelitis, Stephanie, *University of Washington*, 1119
Sederberg, David, *Purdue University*, 984
Segers, Mien, *Maastricht University, School of Business and Economics*, 25
Seow, Peter Sen Kee, *National Institute of Education Singapore*, 484
Severance, Charles, *University of Michigan*, 758
Sha, Li, *The University of Hong Kong*, 929
Shaenfield, David, *Teachers College Columbia University*, 254
Shaffer, David Williamson, *University of Wisconsin-Madison*, 81, 269, 628
Shane-Sagiv, Chava, *The Hebrew University of Jerusalem*, 161
Shankar, Tara Rosenberger, *none*, 944
Shea, Nicole, *Rutgers University*, 532
Shechtman, Nicole, *SRI International*, 333, 444
Shemwell, Jonathan T., *Stanford University*, 153
Shen, Ji, *University of Georgia*, 137
Shin, Namsoo, *University of Michigan*, 580
Siewiorek, Anna, *Centre for Learning Research, University of Turku, Finland*, 508, 524
Sikorski, Tiffany-Rose, *University of Maryland, College Park*, 1032
Sinha, Suparna, *Rutgers University*, 834
Sins, Patrick, *Utrecht University*, 372
Sionti, Marietta, *Carnegie Mellon University*, 976
Sisk-Hilton, Stephanie, *San Francisco State University*, 396
Slof, Bert, *Utrecht University*, 476, 675
Slotta, James D., *University of Toronto*, 548, 651, 960
Smith, Ann, *University of Maryland*, 952
Smith, Garrett, *University of Wisconsin*, 937
So, Hyo-Jeong, *Nanyang Technological University Singapore*, 484, 500
Srinivasan, Saranya, *Purdue University*, 1158
Stahl, Gerry, *Drexel University*, 325
Steinkuehler, Constance, *University of Wisconsin-Madison*, 222
Stevens, Reed, *Northwestern University*, 992, 1103, 1119
Stevens, Shawn, *University of Michigan*, 580
Stieff, Mike, *University of Illinois at Chicago*, 765, 952
Strobel, Johannes, *Purdue University*, 897
Sullivan, Sarah, *University of Wisconsin-Madison*, 698
Svihla, Vanessa, *University of California*, 913

T

Tabak, Iris, *Ben Gurion University of the Negev*, 842
Takeuchi, Lori, *The Joan Ganz Cooney Center at Sesame Workshop*, 540
Tan, Chee-Lay, *Singapore Centre for Chinese Language (SCCL)*, 349
Tang, Xiaowei, University of Maryland, 1079
Tasquier, Giulia, Department of Physics - University of Bologna, Italy, 572
Tatar, Deborah, Virginia Tech, 333
Teasley, Stephanie D., University of Michigan, 758
Tempelaar, Dirk, Maastricht University, School of Business and Economics, 25
Teplovs, Christopher, OISE University of Toronto, 929, 1048
Teske, Paul, University of Washington, Seattle, 166
Togrol, Aysenur Yontar, Bogazici University, 730
Toh, Yancy, National Institute of Education Singapore, 484
Tomory, Annette, Purdue University, 897
Townsend, Eve, Education Development Center, 238
Turns, Jennifer, University of Washington, 818
Tzialli, Dora, European University-Cyprus, 33, 604
Tzou, Carrie, University of Washington Bothell, 1127
Vahey, Phil, SRI International, 285

V
van Aalst, Jan, The University of Hong Kong, 881, 929
van de Sande, Carla, Arizona State University, 643
Vattam, Swaroop, Georgia Institute of Technology, 834
Vauras, Marja, Centre for Learning Research, University of Turku, 452
Velazquez, Griselda, University of California Santa Cruz, 285

W
Walkoe, Janet, Northwestern University, 1055
Wang, Yi-Chia, Carnegie Mellon University, 976
Wang, Zhan, The Hong Kong Institute of Education, 357
Watermann, Rainer, University of Goettingen, 564
Weber, Nicole, Purdue University, 897
Wecker, Christof, University of Munich, 794, 810
Weinberg, Paul, Vanderbilt University, 706
Weinstock, Michael, Ben Gurion University of the Negev, 842
Wen, Yun, National Institute of Education Singapore, 436
West, Richard, Brigham Young University, 341
White, Tobin, University of California Davis, 1008
Wichmann, Astrid, University of Duisburg-Essen, 750
Wiley, Jennifer, University of Illinois at Chicago, 826
Wink, Donald, University of Illinois at Chicago, 802
Winters, Victoria, *University of California San Diego*, 293
Wittmann, Michael, *University of Maine*, 659
Wylie, Ruth, *Carnegie Mellon University*, 57

Y

Yasri, Pratchayapong, *University of Glasgow*, 317
Yoon, Susan A., *University of Pennsylvania*, 690

Z

Zacharia, Zacharias C., *University of Cyprus*, 33
Zahn, Carmen, *Knowledge Media Research Center, Tuebingen, Germany*, 620
Zemel, Alan, *Drexel University*, 325
Zhang, Jianwei, *University at Albany, State University of New York*, 49
Zhang, Sili, *Purdue University*, 1087
Zviling-Beiser, Hilla, *Ben Gurion University of the Negev*, 842